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1. Introduction.
The present report is based on a series of fivz lectures given in the Mathematics
Department of North Carclina State College in March 1963. The aim of theses lectures was
to present a connected account of some recent researches on dual series relations, in par-
ticular of some work done in the University of Glasgow by ths author and Dr. R. P. Srivastay,
The name dual integral ecuations seems to have originsted with £, C. Titchmarsh who

applied it to a vair of equations of the type

.j $(e) wlE) Klx, £) dt = £{x), O<x <1 (1.1)

A%

P(¥) Klx, ¥) dg = g(x), z 1 (1.2)
in which the weight function w(Z), the kernel K{f,x) and the frse terms f(x), g(x) are
all prescribed and the object is to determine the unknown function ${%). A survey of
methods of solution of ejuations of this type was given recently (Sneddon, 1962).

In this report we are concerned with the series analogue of these equations, i.e., with

the problem of determining a seguence of constants {an} satisfying the dual relations

o

} anMMQK&,NJ:f&L 0 &x <¢ (1.3)
LR
. -
/. % Kix, ») = glx), c< x<1 (1.4)
el

where the weight function u(xn), the kernel K(x, kn) and the free terms f(x), g(x) are
all prescribed ana {an is the sequence of positive zeros of a given transcendental
function j(A\). Relations of this type seem to have been discussed first by Cocke and
Tranter (1959) who discussed the case in which w(A ) = xnp, K(x, A ) = J (A x),

300 = 7,00

The two types of dual relation can be described within one framework. Suppose that

the problem is that cf determining a function Yy defined on a set I and that

Ll (x,8) 9(§) = fl(x)’ X € Jl (1-5)
I'2 (%,8) w(¥) = fg(x)) X € J2 (1.6)

where the linear operators Ll erd L2 are defineu on J x I where J = Jl\‘}J2° An
analysis of this general problem has recently been given by W. E. Williams (1963) but we
shall not discuss it here. Our concern is with the solution of dual relations of the type

(1.3), (1.4) for special values of the weight function and the kernel.,




The work described in this report arose ocut of the analysis of certain physical

problems so we begin in (& 2) by reviewing some of the situations in which dual series

relations occur in the analysis of mixed boundary value problems in mathematical physics.
The solution of these dual series relations involves complicated mathematical analysis.
With a view to shortening the proofs by separating out some frequently occurring pieces
of formal calculaticn we separate out (in €3) some of the basic mathematical techniques.
In§%4, 5 we consider the various kinds of dual series relatiocns in which the kernel

K (x, Xn) is a Bessel function of the first kind. The relations are essentially of two
types; in the first (€4) the function j(A) is the Bessel function Jv(h) and the series
involved are therefore Fourier-Bessel series, while in the second (%£5) the function j(\)
is the linear combination KJ;(K) + HJv(K) and the series involved are Dini series. 1In
8§%6,7 we discuss dual relations involving trigonometrical series which are of use in

the solution of certain two-dimensional boundary value provlems. In the next section

(2 8) ve discuss a class of dual series relations involving series of associated Legendre

functions, using the method of Collins (1961). Series relations of this kind which arise

in the analysis of problems relating to spherical caps form a particular case of the

problem of solving certain dual series relations involving series cf Jacobi polynomials.

We conclude our treatment by outlining (in €8) Srivastav's method of solving equations of
this type.
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We begin by considering some of the circumstances in which dual series relsiions

arise in the analysis of boundary value problems in mathematical physics,

2,1, _Electrified Disk in a Grounded Cylinder. ‘ i

Suppose that an electrified disk is situated —
in a plane normal to the axis of an infinite
circular cylinder its centre lying on that axis. V=
The cylinder is assumed to be grounded, and the \‘ e
potential of the disk is prescribed. We take . .. e )/

the origin of coordinates at the centre of the disk =T
and the z-axis along the axis of the cylinder. For > 4

convenience we can take the unit of length in our problem

RS
>

to be the radius of the disk; we may then take the ¢~ T T T
~

radius of the cylinder to be a > 1. The problem is to

find the potential V of the electrostatic field in the Fig. 1

interior of the cylinder, If we introduce cylindrical

coordinates ( p s b, z) then V( p s s z) must be a solution of Laplace's equation
2 2 2

3

S e TR G
ap pop p 3¢ 2Bz

whereV(p,¢,z)—->Oas|z| —& o and

v(p, ¢,0)
and V(a, ¢’z)

f(p,9¢), O<ps1,

0, |z| > 0. (2.2)

Using the superposition principle we see that if we can solve the boundary value
in which

V(e , ¢,0) =f,(p)cos(ve +a,), 0O<p<1, (243)

we can solve the boundary value problem in which V( p , ¢, 0) =f( p , ¢ )
Instead of solving the Dirichlet problem for the space between the disk and the
circular cylinder we can reduce the problem to a mixed boundary value problem for the

semi-infinite cylinder z » 0, O < p < a when the boundary conditions (2.2), (2.3) are
supplemented by the condition

Q
L]

=0, z=0, 1<p < a. (244)

Q@

2
The function
-\ z

Vp s dse) =conlvg v )Y 3 43,0000 " (2.5)

n




satisfies the harmonic equation (2.1); it satisfies the condition V — O as z » @
and the boundary condition (2,2) provided that k1 ’ )»2, k: s «+e are chosen to be the
positive roots of the transcendental equation

Jv(xa) = 0. (2.6)

To satisfy the boundary conditions (2.3), (2.4) we must choose the constants a5 2,
8,, «»o to satisfy the relations

[

Z)\';anJU(knp) 2t (p), O<p<t (2.7)
n=4q
ZaﬂJv(xnp) = 0, 1<p < a, (2.8)
n=4

In particular if the prescribed potential of the disk is symmetrical about the
z-axis, i.e. if V(p, ¢, 0) =f(p),for 0<p < 1, we may take
equations to obtain the pair of equations

v = 0 in these

]
Z N'ad (hp) =£(s), Osp<t, (2.9)
n=4

zanJo(xnp) = 0, 1<p <a, (2.10)

n=1q
where now the {?\ n} are the positive zeros of the function J, (ra),
Pairs of equations of the type (2.7), (2.8) or the type (2.9), (2.10) in which
the sequence of constants a_ is determined by a pair of equations, one of which
is valid in one segment of the positive real axis and the other of which is valid over

another segment, are called dual serieg equationg.
242, The Reissner-Sagoci Problem for a Semi-Infinite Cylinder,

The standard Reissner-Sagoci problem is that of determining the components of

stress and displacement in the interior of the semi~infinite elastic solid z » O when

a circular area of the boundary surface z = 0 is forced to rotate through an angle «

about an axis which is normal to the undeformed plane surface of the solid; it is
assumed that the part of the boundary surface which lies outside this circle is free
from stress, (Cf. Sneddon, 1951, p.500). Recently Sneddon and Srivastav (1963)
bave generalized this problem to the case in which the semi-infinite elastic body has




a cylindrical boundary whose cross section is a circle of radius a.
It has been shown by Reissner (1937) that in this case the only non-vanishing
component u¢, where we use cylindrical coordinates (e s P, z); all the compenents

of the stress tensor vanish except ¢ z¢ and 9, ¢ which are related to u ¢ through
the equations
cu a fu
u cue (_9. .
92¢ =¥ 3z ? %o¢ "“pap pl’ (2.11)
where p denotes the rigidity modulus., To satisfy the equation of equilibrium
9o do 20
—£2 + -z + L2 =0
ap oz P
we must choose a form for u é satisfying the equation

62u¢ 10 'U.¢ 'LI¢ aZU¢

o —  —

= 0. (2.12)
ap° pap p° 0z

The boundary conditions of the probler are simplifiéd if we choose the radius of
the prescribed circle to which the rotation is applied to be our unit of length, On
the plane boundary z

0 we then have the boundary conditions

u¢=f(p),0$p<1; oz¢=0, 1<p < a, (2.13)
where the function f(p ) is prescribed. In the case
wg= f(e) of most immediate physical interest f(p) =ap ,
. $=7p where a is a constant, but it is of value to derive

O;¢= 0 the solution in the general case,

‘ ; r/ In the first instance we assume that the

cylindrical wall of the cylinder is rigidly clamped;

; i,e, we assume that

U ug =0, p=2a, z>0. (2.14)

We also assume that u¢, o z¢’0p¢ all tend to zero
as z =P o, (Cf. Fig, 2).
If we observe that

\\} 2o 121 ,2134 0 gz
| 8p*

p dp p% 8z%Jop dp

we gsee that
Fig. 2 uy =g (2.15)

is a solution of equation (2.12) provided that y
is a harmonic function. In this case the expressions for the non-vanishing compon-




ents of the stress tensor assume the forms

S 3% 3 _CZ.(_%) 2,16)
x) = 9pdz ? apgb "“"ap pop )’ (2.16,

If we write

[d
b(p, 2) = y 075 00) (2.47)
=1

nn o' N e

in equations (2,15) and (2..16), where Ki g My ey A, s +.. are the positive zeros of

J (\a), then
! = - Aoz ) _
= 2_’ }Ln a s A J ()"r P), (2.18)
il 1 }

= “h_z
n ~
c¢z = ~u Z ane J1()\np), (1.19)

=1

>

so that equation (2.‘!4) is satisfied and “he mixed boundary conditions (2.15) will be

satisfied if we choose the constants & tc satisfy the dual series equations
z ;Cn" a J‘(Knp) =2(p), Osxp < 1, (2.20)

c, 1¢<p < a, (2.21)

4
3

oy

—

-
©
~

1]

3

sy

~
where, it will be remembered, the 7\P} are the positive zeros cf J (Ka)

I, instead of the bcundary condition (2. 14), we assune that the cylindrical

boundary is stress-free, i,e., if we assume that

g F=a, z>0, (2.22)

i% is necessary to consider, not a semi-infinite

%: cylinder, but a very long one of length & >> a,
/ We assume that the base of this cylinder has zero
displacement, i.e. that

vy =0, z=©8, O<p<a, (2.23)

The conditions (2.13), (2,22), (2.23) can be realized
by considering the distortion of a cylinder which is

rigidly attached to a fixed rigid foundation z = §

Fra. 3 and is deformed by the application of a torque to a




circular patch of its other plane surface (e.g. *through the rotation of a rigid disk
attached to it) while the remainder of its surface is free from stress (cr., Pig. 3),

If we assume the form

-]

., osiman (8- 2) )
u¢ =aop(5 - 2) +Z )\n &n s:'».r)hknﬁ J1()\np) (Z'ZZ‘;)

n=1

for the displacement, then we see from equations (2.11) that the stress components

are given by the equations

coshkn(ﬁ - z)
Uz¢= “Ha P = “z & sinh A 8 J1()\np), (2.25)
n=1
= sinhkn(é - z) X
°;¢= - z,an sinhX & 3,(xp) (2.26)

n=1q

It fcllows immediately from these equations that the boundary condition (2.23) is
satisfied and that the boundary condition (,2.22) will be satisfied provided the A 's
n

are the positive zeros of Jz()\a). Also, since on z = O,

oo

‘11'
s pse Y 55,09

n=1

©
i

©0

Oy = ~pa p - H Z a, coth()»n6) J, ()\np)

n=4

it follows that the boundary conditions (2.13) will be satisfied if the coefficients

a_ satisfy the dual series relations

- -]
aopﬁ +Zx'ﬂ1 anJi()\np)=f(p), O<p <1 (2.27)
n=4
a_
a_p +Z a_ coth()an) J (knp) =0, 1<p < a,
n=4

The last pair of equations is the pair appropriate to the deformation of a
cylinder of finite length & . If we are considering a very long cylinder (§ »>> a)
then we may replace the factors coth(?»nf)) occurring in the series on the left-hand
side of equation (2.28) by unity. For a long cylinder the problem is therefore re-
duced to the solution of the dual series relations




8
[
-9
a Pé + Z N, a,d (\p) = (o), Osp <1, (2429)
R=4
o
&, + Z a_ J1 ('A.np) = 0, 1<p < a, (2.30)

n=gq

where & is a lmown constant and the kn's are the positive zeros of JZ(M).

243, Problems in the Conduction of Heat.

Similar equations arise in problems concerned with the conduction of hea® in
cylinders. If 6(p, ¢, z) is the deviation of the temperature at a point with
cylindrical coordinates (p, ¢ , 2) from a standard temperature 6, then it is well-
known that in the steady state 6 must be a harmonic function in the region considered,
8o that a solution appropriate to the semi-infinite cylinder O<p < a, z 3 0, in
which there 1s an axisymmetric flow heat is

-]
-\ 2z

0(p, )= Y ATag (e " (2.51)

R=4

Prom this equation it follows that the rate of flow of heat per unit area across the
plane z = O out of the solid is

(+ k g%) - -k 2 a, I (o), (2.32)
=0

n=q
where k is the conductivity, while that across the cylindrical surface p = a2 out of
the solid is

26 . = Az
(" ka_p') a =k Z a" e n J1 (a)\n) (2-33)

n=1

The constants kn are, as jyet, unspecified. Their values will be determined by
the boundary conditions on the surface p = a., There are three important cases to
be considered,

(1) In the firsi case we assume that the temperature of the surface p = a is
maintained at the constant value 6, so that G(a, z) = 0. Prom equation (2.51) it
follows that in this case the )\n's are chosen to be the positivé zeros of J_ (ra).

If the plane surface z = O is heated in such a way that the temperature is

prescribed over the circle O € p < 1 and the remainder of the surface is insulated then




9
we obtain the pair of dual integral equations
oo
z x;" anJ'O(p xp) =f(p), Osp< 1 (2.34)
N=1q

Zan Jo(p ‘An) = 0, 1<p < a, (2.35)

n=q

where the function £{p) is preseribed,
On the other hand if the surface is heated in such a way that there is a
prescribed flux of heat into the cirele O € p < 1 and the remainder of the surface

is maintained at the standard temperature 6 , then the a must satisfy the
equations

a_ Jc(p.\n) = glp)y, Osp < 1 (2.36)
n=1

Zx;‘ a_ Jo(pkn) = 0, 1<p < a, (2.37)

n=4
where the function g(p) is prescribed,

BEquations of a more complicated type arise if we have radiation from the surface
z = O into a medium maintained at a constant temperature 00 .

By Newton's law of cooling we then have that on z = 0

a6
(ka-;) =H6(p , 0)
3=0

where H is a constant, From equations (2.31) and (2.32) we then find that

-k - -1
(He k 5= =k an(1 + B )Jo(pkn)
=0 n=o
where h = H/k,
Hence if the temperature is prescribed over the circle O < p < 1 of the surface

z = 0 and over the rest of the surface there is radiation into a medium meintained at

temperature 6, , the constants a =~ occurring in the solution (2.31) must satisfy the
dual serdies equations

Z No 2nJ,(h0) = £(p), 0<p <1,

n=g4

(2.38)
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by . . 5
Z a"(1 + 0 )Jc(/‘.np) =0, 1<0s< a, (2.39)

n-q

On the other hand if the heat flux is prescribed over the circle z = 0, O <p < 7 and
we have the radiation condition over the zone 1< p < a, we see that the equations
determining the coefficients a are

20

S—‘a J(x p)=glp), Oxp<n, (2.40)
Lo

n=14

oo
2(1 +hx;’) a, J(xp)=0, 1<p < a, (o)
n=1

(_:L_l) In the second case we assume that the cylindrical surface p = z is
insulated against the flow of heat. From equation (2..35) it fcllows that the Knvs
in this case are the positive zeros of J’1 (ha). We again get boundary value problems
of the types considered in (3)” The dual series relations zre exactly the same as
those listed above except that the A, are now the positive zeros of J1 (ra).

(&__) Finally if there is radiatiorn from the cylindrical surface into 2 medium
maintained at the fixed temperature 60 we have, as a consequence of Newton's lew of
cooling, the equation

(He sx 2 -o0. (2.42)
P
p=a

Substituting from equations (2.31) and (2.33%) we find that

( . A, 2
\He +k%—§)p_a=kz N e [ha (h ) +an;(xna)]e

n=1

from which it follows that the conditions (2.1.2) is satisfied if we choose the ‘)\,
occurring in the solution (2.31) to be the positive roots of the transcendental
equation

nd (aa) + A3 (ra) = O. (2.43)

Dual series involving trigonometric series arise in the solution of problens
concerning the conduction of heat in the long strip O s x < # s O 5y 8. If we
suppose that the temperature deviation 6 (x, ;v') is prescribed over the segment
O s x<c; y=0and that the remainder of the boundary of the strip is insulsted
against the flow of heat across it then it is readily shown that the solution of the
problem will be




1
6(x, y) = 2a (5 -y + Z n"'a _cos(nx) %ﬁl, (0 < xsm0sy<H), (2.44)

n=4

provided that we can determine a sequence of constants {an} to satisfy the dual
series relations

% a°8 + z n-’an cos(nx) = f(x), 0<x<eo, (2.45)
n=1

% a, + z &, tanh(ns) cos{nx) = 0, ¢ <x s, (2.46)
n=1

where the function f(x) is prescribed. If & >>m we can replace tanh(nd) on the
left~hand side of equation by unity to obtain the dual series relations

ad + 7 n"'a . cos(nx) = f(x), Osx«<ec, (2.47)
] ) n
n=1
ta, + Z a, cos(nx) = 0, c<x sm, (2.48)
n=1

On the other hand if the conditions on the sides x = 0, x =# are replaced by

the conditions 6 (0, y) = 6( w, y) = O the solution appropriate to the semi-infinite
stripO < x <7,y 2 0is

L]

0(x, y) = Z n"'a_sin(nx)e™" , (2.49)

n=4

where the constants { a"} satisfy the dual series equations

s

n~’ a, sin(nx) = £f(x), 0 s x< o, (2.50)
N=y

yan sin(nx) = 0, C<X <%, (2.51)

e
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2,4, Some Boundary Value Problems for a Svherical Cap.

Dual series relations involving Fourier-Legendre series arise in the analysis
of some electrostatic and hydrodynamic boundary value problems for a spherical cap,.
The first problem we consider is that of determining the electrostatic
potential u due to a thin spherical cap maintained at a prescribed potential, If we
use spherical polar coordinates (r, 6 , ¢ ) referred to the centre of the sphere as
origin and the axis of symmetry of the cap as polar axis (0z in Fig. 4) s We can
describe the cap by the equations r = a,
0 <6< a . On the assumption that the
prescribed potential is symmetrical about the axis
of the cap, i.e. that u = £(#) on the spherical
cap, we may take u tc be an axisymmetric solution

of Laplace's equation

Pu 2 8u 4 0 . ou
AT e —— | sin8 = | =0
Fig. L or rdr r sinfaé 286

>

satisfying the conditions
() u=f(06) onr=2a,0 6 <a; andu is continuous across r = a;
(i) 9 uy/dr is continucus across the spherical regionr =a, a< 6 <7
(i11) u = o(r™') for large r.
A solution of Laplace's equation satisfying the continuity condition on u across
r = a and the condition (Ei) is '

-]
( r)"
a, /:;-) Pn(cos 8), Osr< a

n=o0

u(r,G) =1 o0

a Neq
a (;) Pn(cos 8), r<a

where to satisfy the conditions (3) and (E) the constants a must be chosen to be
solutions of the dual series relations

.
)

zan P (cos 6) = £(e), (0<6<a), (2.52)
Z(Zn +1) a_P (cos0) =0, (a <0 < 20, (2.53)




A similar boundary value problem involves the determination of the velocity
potential & due to the motion of a spherical cap along the directior of its axis with
constant velocity U in a perfect fluld at rest at large distances from the cap, If
we use the above coordinate system then § = §(r, 9 ) must be an axisymmetrical
solution of Laplace's equation such that, for large values of r, & = O(r ) and
rd¢/ar is omtimious across the sphere r = aj further it must satisfy the
condition

r?;:-ﬂacoso, r=a, 056 <a (2.54)
while on the spherical region r =a, a € 6 < ¥ , # must be continuous (Lamb, 1953,
P.160). An axisymsetric solution which is O(r ~?) for large rand has r33/ar
contimious across r = a is given by the equations

Z(n +1)a (f) P (o0s6), (r<a),

8(r,0) = n=

-Zn nn(%)"” P“(ooca), (r>a).

The condition (2.54) and the continuity of @ across r =a, a < § < ¥ are satisfied
iftheoonstantaa" satisfy the dual series equations

)

n(n +1)a P (cos6) = ~Tacos 0,00 <a, (2.55)

-
-

o, a<O<w, (2.56)

Z.(al 0.1)an P"(co- 0)

On the other hand if we suppose that the cap moves through the fluid in the direction
$ = O perpendicular to its axis of symmetry with uniform velocity U, The velocity
potential @ (r, 0, ¢) for the motion must satisfy Laplace's equation

r'alg-ﬁbuq-—l—l sing &% +—Lﬁ=0
ar ar 8in 0 36 36/ sin’e a¢°

be such that & = O(r") for large r, ® and 38/3r are continuous over the surface
r-a, a<6é <2y while

rg-zga-l!ulin00u¢. (2.57)
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It is easily shown that

”
H
A
®

- -]
Neq
r -1 .
Z(n + 2)an (a) T, (cos 6)cos¢, O
n=o

o
nez 1
- Z(n +1)an (%) L (cos 8 )cos ¢ , r>a
n=o0

where the coefficients a satisfy the dual series relations

@(r,9:¢) =

-Uasiné, 0<6<a

Z (n+1)(n + 2)an Tn':1 (cos6)

(2n + 3) a, '.I?n-'1 (cos 6 )

+

o, a<f<w,

n=4

3. Mathematical Preliminaries.,

laranatear oy

The solution of the various types of dual series relations which we have derived
in ﬁ'% is not a simple matter. The analysis is complicated even in the simplest case
and it is preferable to shorten the proofs by separating out various bits of formal
analysis, This is what we shall do in this section, We begin by listing some

properties of operators of fractional integration.

2 The Erdelyi-Kober Operators,

We shall make use of the Erdelyi-Kober operators In o a8 modified by Sneddon
. 2
(1962). If n and a are real, a » O and 7n > - & we define the operator I,
by the equation

b4

-2a =21 f=z
Ir a {f(u); x} = 2x s u277 +1 (x2 - uz)a_1f(u)du (3.1)
L ] 0

while if @ < O and n is the least positive integer such that @ + n » O we define
it by the equation

. _=2p=2a -1 n_.2n +2a+2n +1 . (3.2)
In’ a[f(u)’ X} =X &x X In’a+ n%(u); k}’

where 5:‘ denotes the operator defined by the equation
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(5). (3.3)

1 d
Df=7%
e case in which <1 < a < O when equation (3.2)

We shall in fact only encounter th
reduces to the simple form

~2n -2a -1
In’ a[f(u); x} ——;}1—;—)-; (x® - uz)au2n +1 p(w)au (3.4)

A much used property of these operators is that

28 . _ 2P . N
In’a{cu f(u), x} = oX ITI +ﬁ,a{f(u)’ x} (3.5)
We shall also require the fact that ITI has an inverse defined by the equation
»
™ -1 . (3.6)
Nnsa ntay, - a

and the property

I n,a+B (3.7)

tI =
n,a n+a,f

We also note that I o is the identity operator,
’
When the function to which the operator I ,a
than one variable we shall modify the notatlon of (3 1). For example we shall use

I flu, t); u —)x} to mean
n,a

is applied is a function of mcre

-2a = 271 fx
_2_1__17_(_6__/ u2r7 +1(x2_u2)a-1 f(u, t)du.
0

It considerably simplifies the writing down of our results if we define a
function Kv’ a, B,y (p, t; a) to be the integral

" K
[ —1%71 (o3) Tp(t) 5 *

(when the integral converges). TWhen it is clear from the context what v and a are we

shall write K t) for K
a,ﬁ,y(p’ ) Vs ay By

correct convergence conditions 'at infinity' if 2a > ¢ + t; since, in our

(p, t; 2)s The integral will satisfy the

applications p < a, t < a this condition is automatically satisfied, To ensure
convergence at the lower limit of integration we must have -2v + a + 8 +1 +y > =1,
i.e. we must have v < 1 +3( a+ B +v ).

The following relations satisfied by K VB Ly (p, t) can easily be deduced from

the recurrence relations satisfied by modified Bessel functions of the first kind

’
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(Watson, (1944), p.79) and integrals given by formulae (6), (7) on p.365 of
Vol.II of Erdelyi (1954):
o _a .8
a—%{p Ka’p’y(p,tz}_p Ka'1,ﬁs Y+1(p’t)’ (3.8)
2.8 _ 4B
at{t Ka,ﬁ,y("’t)}-t Ka, 81, yer (P28 (5.9)

a+ u,ﬂ,y-u(x’ ), (.10

. _oH _-H

I—;—-a,u{Ka’ ﬁ, y(p’ t), f:—)x}_Q X K
. _oH _—H

I%p’”{Ka’p,y(P,t), t—»x}_z XKy pau,y o Tt (1)

We shall also have occasian to consider the function defined by

©yK'(y) + HK (y)
K:,H,ﬁ,y,ﬁ(u’ v) =[ v v

o ¥I'(y) + HI (y)

Ig(uy) I,(vy)y' *® o (3.12)

(0<u < 1, 0 < v < 1) whenever the integral converges. Using the recurrence re-
lations satisfied by modified Bessel functions of the first kind and the results in
Erdelyi (1954) quoted above we find that

9 p.» B _»
ﬁ{u X, 1,8,y,6( V)}z K E, B,y 5e1(8 ), (3.13)
avv .KV’H,p’ Y, 8(“, V)}: v KV,H,p,Y- 1, 5 +1 (uﬁ V)’ (3-111-)

* a —-a. ®
I—;—ﬁ, G{KV,H,ﬁ, Y, 5(u, v); u—)x} =2'x Kv,H,a+ﬁ,y,8- (x,v) (3.15)

L, a{x

:,H,ﬁ’Y, 5(‘1, V); V‘,y} =2 y-jnz’n’p’y*_a’a-a(u’y) (3.16)

32, Infinite Series involving Bessel Functions.

In the subsequent analysis we shall encounter functions of the type S

Vs oyflyy
(py t; a) defined as the sum of the infinite series
2 & T (ph ) Jo(tn )
S (p, t; &) =— AU K AR, ZY, (3.17)
v,a,ﬁ,y a2 JZ (ax ) n -
A=4 vei n

whenever the infinite series converges. The infinite sequence {)"n } is formed of the
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positive zeros of the function Ju+1(ak). In equation (3.17), p and t are real

variables satisfying the inequalities Osp, t €1< aand-(a+f +2)<y < O,
Series of this type are considered in Sneddon and Srivastav (1963) but special

cases were considered earlier by Tranter (1959). Tranter defines two functions by
the series

- J (A)J, (e p)
81(v,m, k,p)—z vecntk s ¥ 8 ’ v > -1 (3.18)

}\]: Ji +1 (aka)

Z Jv +2m +k()‘s)JV 4+2n +k()'s)

sz(v,m, n, k) xiJﬁ+1(axa)

, v-m-n<k (3.19)

8=1

where m and n are zero or positive integers, k » 0, and a > - 1.
that, in the notation of equation (3.4 7),

It is easily seen

2
81(v,m,k,p)=%a sv,v,v+2m+k,-k(p’1’ a.), (3.18a)

and
2
. .
splvamym, k) =288, L onek,ve 2n 4k, 2(1s150)e (3199
We shall also find that we have to deal with series of the type
= g (ar ). (vr 2P
S. (u v) =2 g u__lgc Y M (3.20)
vyH,B,y,56"?

m=¢

2 . 2. 2
(M, - V+E )Ji(‘zm)
O<u<1,0« v<1,where,now,'Lkm} is the infinite sequence formed by the

positive roots of the transcenden equation

A3 +8I,(\) =0, (3.21)
H and v being real constants, v

3 -~ %. Series of this type have been discussed by
Srivastav (1963a).

To obtain an integral representation of the series on the right-hand side of
equation (3.17) we consider the contour integral

/CF(z)dz

where the function P(z) is defined by the equation
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J (a z
ra - P T ) s (3.22)

and the contour C consists of:-
(1)  the portions of the positive real
axis joining the points

b 7‘1 - 51”‘3 *ogs Mg yq” 6541

(8 =1,2, c00yp = 1)5 0, +6,, R vwhere

the §'s are small and p and R are large
and such thatkp< R <)

p+1;
(ii) a series of small semi-circles

yS (S = 1, 2, XY ¥} P) with equations
lzs —lsl :68;

(1ii) a large circular quadrant |z| =R,

O arg z g %7;
. < s . : Yiw iw
(;!) the positive imaginary axis from z = Re to z =8e*"";

(x) a small circular quadrant lzl =8 Og< arg z < 3w

In general the point z = 0 is a branch point of P(z). Each branch is, however, an
analytic function and therefore this presents no difficulties; we choose that branch
for which Re {F(z) | = Ja(pz) Jﬁ( t z)z1 *Y for real values of z. Using standard
procedures in the calculus of residues we can easily show that

Sv,a, B, y(p, t;a) =/ Ja(px)J (tx)x)/+1dx+-i-si:{%(a +ﬂ+y-2v)} Kv,a,ﬂ, y(p, t;a,) (3.23)
0

where the function K (p, t; a) is the integral defined above.

v,a,B,Y
In a similar way we can obtain an integral representation of the series
* *
s (u, v) in terms of the integral K (u, v) by considering
v,H,B,v,5 ’ v,H,8,v,9% ’

the contour integral
f ¢(Z)Jﬂ(uz)J (vz)z 541 az
C Y

where 2 3(z) +4¥(z) +H I (z) + 1Y (z)

¢(z) =
2J;(z) +H Jv(z)

and C is the same contour as before, except that now the A\ 's are the positive roots of
equation (3.21), We find that
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-
s
v, H,8,Y :S(u’ v)

[:Jﬂ(ux) Jy(vx) xs""1 dx

sin{%(& +B +y ~ 2V)}K:,H,ﬁ Y, s(u, v) (3.24)

+
I [

We see that the expressions for S and S‘ involve the Weber-Schaftheitlin integral

/ =g (px)Jo(tx) ax
0 @ B
in which p and t are supposed to be positive, and where, to ensure convergence

R

Re(a +8 +1)> Re(M)> =1, p £t,

Re(a +8 +1)> Re(d)> 0, p =t.
The evaluation of this integral is a long and complicated affair, for the details of
which the reader is referred to pp.398-4Q4 of Watson (1344). We shall merely state

the relevant results,
It has been shown by Sonine and Schaftheitlin that the integral

fx P Vg g @0, (bx)ax (3.25)
L]
has the walue
y-1 2
2’ L) Fy (as B5v5 23 (3.26)

2Y~ By @ P (y)1(4-8)

[

when b < a and the value

aa-ﬁ I'fa)
2Y "B 2e =y +ip(y o )D(a - B 4 1)

when b > a, It will be seen from these results that the integral (3.25) is a function
of B/a which is not analytic at the point b/a =1. When b = a, the value of the
integral has to be found by a special procedure for the details of which the reader
is referred to p.402 of Watson (1944).

Some particular cases are of special interest. If we put a =V +m +1,
B=1-k~n, y=vsel,a=1,b =p , wvhere m is a positive integer, and k and v
are such that the integral converges we have the reault

2
Fla,a - y+tza=p4 ;:7 ) (3.27)

" 0 P(v s+m a9)
2k-1l‘(v +1)T(m + k)
I(V’m’ksp)-

2F1(v+m +1; 1 -k = mvet;07), p <,

p>1,
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I(v, my k,p) =/mu1 -kJu +2m4.k(u)Jv(Pu)du (3.28)

Using the transformation

Flayp,y;2)=(-2Y"%"Pp(y-a,y-p;5v;2)
(Sneddon, 1956, p.22) and the definition

3‘m(a, b, X) = 7 (~-n, a + m; b; x)
of the Jacobi polynomial we obtain the result

[ r(vsm+1)p"4 -p2)k-

2k‘-11‘(v +1)0(m + k)

1
Sm(k «V, ¥ #1393, 0<p < 1

I(vy mpkyp) = 4 (3.29)

0,

\

To return to Tranter's series s, and s, defined by equations (3.18), (3.19) we

note that it follows from equations (3.18a) and (3.23) that, since m is zero or a
positive integer,

31(V1m9k99)=I<V:m’k:P) (3.30)

where I( v s W, k, p) is defined by equation (3.28) and can be evaluated by means of the
formilae (3.29). In a similar way it follows from equations (3.19a), (3.23) that

v n, k) = % a? 1J J XX
32( s My N, ) 'fa/ox V.4 2m + k(x)v...ank‘-(x)

@ a?
- —— K N .
(4P & sin(icn) V) ve2ns k) vezns ky-21015 %) (3.31)

Another special case of equation (3.23) which is of interest is

s"a”a"‘%Pa "'%P(P:t3 a) = /O”Jv(,)x) Jv"'lz‘P (tx)x1"’12de

2 . (1
- S gin(ip7)K ts
,S (2P ) VyV,y v ;P: 1 P(P, H a)

which, as a result of equation (3.29), can be written in terms of Heaviside's unit
function in the form
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£
Ve V, V'12'P’ "%P(p’ ? a)

1 =FP L V= TP(p2 . 42)EP -1
T (3p)p’

H(p - t) -%sin(%pﬂ)K (s ts ) (3.32)

1 1
VsV V=3P, =2
In a similar way we can show that

Vo, v+, v =2%p,~2p =1 (py 5 a)

'%Ptv-%P(pz _tzL%P
14
T4 +4p)p” * 1

H(p - t) = Zsin({pr)K

v, vet,vtp,—bp-1Ps t38) s (3.33)

Further results can be obtained by means of the Hankel inversion ‘t:heor!emY If
we apply this theorem to equations (3.28) and (3.29) we can deduce that

1 4.2
/ PAGINC -pz)IHS"m(k+v, v+1,p% ), (pu)dp = 2 Ty a)ra+ k) &
o

T vmsd) 0 Tvaznek (W

which, by a trivial change of variable, we can write in the form

[s x v+1(az - xz)k-d gm(k + V,V +1, xz/sz)Jy(Ex)dx
[e]

k1
2 &
- L v R e kB (3.34)

If m = O the Jacobi polynomial reduces to unity and we obtain the simpler relation

/'S xl““'(s2 - xz)k-‘l Jv(E x)dx = ok I‘(k)sv*k E.ka +k(€8). (3._,‘35)

We also require to obtain integral representations of two trigonometrical serdes
involving Bessel functions.

By integrating the funotion
iwz

cosec( gz)e Jo(uz)sin(xz),

round the contour I' which consists of the positive real axis, the positive imaginary
axis and the arac, in the first quadrant, of the circle lzl =R, with large R, and
with indentations around the points z = 0, 1, 2, ..., n, ... we can easily show that
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Z J_(nu)sin(nx) =/° J_(tu)sin(tx)at -[ "—th_yT I (uy)sinh(xy)dy

GEX

Also it is well-known (Watson, 194k, p.405) that
[ 1
/ Jo(tu)sin(xt)dt = (%% - v*)? H(x - u)
0

where H(x) is Heaviside's unit function. Hence we have relation

Z J, (nu)sin(nx) = —-ﬂi—_—ul— ——(ﬁl TWr (L\v)d\v (3.36)
V(- u?) o sinh(my)
Similarly, by integrating the function

cosec( ﬂz)ei' 2 J1(uz)cos(xz)

round the same contour I we can show that

Z J_ (nu)cos(nx) =/: 3 (tu)cos(xt)at -/: % e "V I (uy)ay

n=1

from which it follows that

J (nu)cos(nx) =1 _xH(x-u) - GM e~ " I (uy)dy. (3.37)
; ! u 4/(xz-uz) [o sinh(ﬂy) i

303, Some Integral Equations,

In solving dual series relations we sometimes have to solve an integral eguation
of the type

¥ __h(t)at
/ 2 {f(x) - f(t)}

where O < a < 1 and £(t) is a strictly monotonic increasing function in (a, ). We
shall give a solution due to Srivastav (1963¢).
Consider the integral

f"u!g‘x!du .
/ {f(x) - f'(u)}1-a

= = g(x), a<x<b (3.38)
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If we substitute the expression for g(u) given by equation (5.38) and interchange the
order of the integrations we find that the integral is equal to

f: n(t)at f: { £1(u)dy .

£(u) - f(t)}a {f(x) - f(u)}1 - a

The inner integral is easily shown to have the value Blay1 - a) = o cosech wa. It
therefore follows that the integral has the wvalue

p4
m cosecna[ n(t)dt
a

and hence that the required sclution is

w(e) - sloze & | IO - - (3.39)

s at ‘2 {:f(t) -f‘(u)}1 - e
By a similar method it can be shown that the integral equation

h(t)dt

x {f(t) - f(x)}a

where O < a < 1 and £(t) is monotonic increasing in (a, b) has solution

_ _sinwa 4 £ (w)glu 3y
n(t) = - [ (f'(u) _%S‘T1 — (3ue1)

Two special cases are of particular interest and we shall consider these now.
If £(u) = =cosu, f'(u) = sinuand ¢ = # and we find that the integral equation

=g(x)y a<x<b (3.40)

x
/a MG%C)tdf cos x) _ g(x) ’ a<x<bd (3.42a)
has solution .
h(t):i—%/ 8120:111121331; , a<t<hb (3.42b)
a
and the integral equation
/ h(t)dt = g(x), a<x<b (3.10-38.)
Vlcos x - coa ’c)j

has solution




b
14 sin u glu)du P . Y
B(t) = - 7 dt ['c cs L ~cosu)? ~° t< b (5.430)

The classic case is the one in which £(u) = u?, £'(u) = 2u., In this instance we
find that the integral equation

[ h(_l_t at __ O<a<i, ac<zx<bh (3.0442)

’
a (x? )
has solution

. t 3 .
n(t) - 2&inme d f —paly <o, (5.45)
m dt a (£ -u)

and that the integral equation

_1'111):2__ =g(x), O<au<1, a<x<b (3.452)

x (t - x)
has solution

n(t) = - 2-8inze 4 —M—- 0O<a<1, a<t<b. (3.45%)

4 t (u - 2)1_

Selts Some results on Associated Legendre Polymomials.

In the discussion of dual equations involving Fourier-Legendre series of the type
(2.52), (2.53) we require certain properties of associated Legendre polynomials., We
list these now,

Ferrers' associated Legendre function of the first kind is defined by the equation

" (x) = ()" (1 - L (%), (41< x<), (5.46)
dx

H mon

m and n being zero or positive integers and Pr(x) denoting the Legendre polynomial of
degree r, and by the relation

(x) "1) n + 2111 + 1 (x) (3.47)

mon

(MacRobert, 1947, pp.125 and 328),
If we assume that the expansion

£(8) = z (2n +2m + 1)cn T;i‘n (cos 6) (3.48)
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—

N
(63}

is valid for Os 8 < # and that it can be intezrated term by term, then, using stan-

dard integrals involving associated Legendre polynomials, we can easily show that the
coefficients are given by the formula

1)

1r
m . \
c, %‘(-1)m/ f(x)’.l?mn (cos x)sin x dx (3.49)
0
Using the results of §3.5 we can cbtain an integral representation of the
associated Legendre polynomial, If we write

m
r 6 R . (u)du

T (cos ) = cotméej - sy O<b<m, (3450)
m+n o #f(cos 6 = cosb)

then it follows from equations (3.42a and b) that

) 1.4 u sin x tan" %me:: (cos x)ax
R" () = —— .
men T du Jdo A (cos x - cos u)

The integral on the right is difficult to evaluate but it has been shown by Collins
(1961) toat

. m m.,.l- 1
R® (u) S 2laet) omes oy coa(quf e @) conln e m e fu (3.51)
sinu

7(n +2n +1) cosFu

When m = 0, this gives Ron(u) = Rn(u) where

R (a) 24% cos(n + f)u. (3.52)

If we insert this expression into equation (3.50) we obtain the Mehler-Dirichlet
integral for Pn(cos 6). Similarly, by putting m = 1 in equation (3.50) we find that

, (0) = ~1— sec(}u) tan(}u) [s—mﬁﬁ-}-‘% S—M} (3.53)
N2 nas+2

n + 1

4. Dual Relations involving Féurier-Bessel Series.
A~

We shall begin by considering the pair of dual series relations

00

AFa J,(pn)= £(p)y, O0<p <1, (4.1)




a J(pr)=rf(p), 1<p s a, (4.2)
n V n 2

LEX]

where p and v are real constants satisfying -1 ¢« p< 1, v > G, ixn} are the
positive zeros of the Bessel function Ju(ax). The functions f p) and £, (p) =re
prescribed and the problem is to determine the sequence of constants a (. This
pair of equations is an immediate generalization of the pairs of equations (2.7) 3
(2.8); (2.20), (2.21).

We split the solution of this problem into two varts by considering two specizal
problems the solutions to which can be combined to give the sclution off the generai
problem:

Problem (3): This is the special problem which occurs when :f'z( p) =0in

which case the equations reduce to

-P <
an a J,(pr) =2 (), O0<p <1 (4.3)
n=1
Zan I, (ex) =0, 1<p < a. (4otr)
=1

n=

Problem (E): This is the special problem corresponding to the case in which
f (p) = 0 and the equations reduce to
1

Zx?an Jv(pkn)=0, 0sp< 1 (4.5)
n=4
Za"JV(pxn)=fz(p), 1¢<p < a, (4.6)
n=1

Problem (a) was first considered by Cooke and Tranter (1959) using a method
similar to Tranter's method of solution of dual integral equations, We shall begin
with an account of this method and then give an account of an alternative method due
to Sneddon and Srivastav (1963) in which the solution to the problem is reduced to
that of a Fredholm integral equation of the second kind.

4.1,  The Cocke-Tranter Solution of Problem fa).

We need not restrict v to v 3 O but we assume that » is not a negative
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integer and that v > -1 +%p.
If we put k =1 - $pin equations (3,30) and (3.29) we find that
]
J i (0 )a (hp)
Z 4 +12m+11 ;zﬂ —t_0_ _0, (1<p < a) (4a7)
- 2P
=1 xn vV o+ 1<)‘na)
so that if we take ©
a () (4.8)

1
= “ bJ 4
n -1 - %pJZ (»_ a) nVv +2n+1—3p° n
n V+1' n m=0

the equation (l;..l...) 1s automatically satisfied.

The coefficxients bm | have now to be chosen such that a, as given by equction
(4e8) satisfies equation (4.3). Substituting the expression (4.8) for a into
equation (4.3) and interchanging the order of the summations

J 2 (A3 (0 p)
b Z v +2m<:1 zpP n v n’. o, (), (0< p < 1). (4.9)
m 7»1 +§'PJ2 (7» a) 1

m=o n=1 n v+1'Tn

Now, by equation (3.31.,), if s is zero or a positive integer

1
‘Jv+23+1-%p()‘n) 2ZH(ves +1)

1 1
: = [ pV¥H(1-p2) 2P X
)= r(v+1)r(s+1-4p)*0

XF (1 -tpev, v +1,0°)3,(1 0)dp, (%.10)

where '3-8 is a Jacobi polynomial., Hence if we multiply equation (4.9) by

1
, v (1 - pz)zp 3‘5(1 —%p+y,y +1,p2), integrate with respect to p from 0 to

1, and interchange the order of integration and summation and make use of equatian
(4.10), we £ind that

Z mem(v,s, P) =E(1,s, P), (%e11)

n=0

where we have written
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1 1 1

z -

B(v, s, p) = 2 ra s1) [ PPt (1 -p2)7EP i
T(v+1)T(s +1 -%p) J0O

X (1 -2p+ v, v +1,0%2(p)dp, (4a12)

= J 1. (n)Jd ()
Bm(v,s, p) =Z vV+2n41~3p M Yy 128 41 2P n (lpo13

2
A
n=| ani+1(na)

Equation (4.11) with s = 0, 1, 2, 3, .., provides a set of algebraic equations
for the determination of the coefficients bm +« Once the values of the b;ls have
been found, the coefficients a | can be evaluated by means of equation (4.8).

The set of equations (4.11) can, under certain circumstances, be solved by an
iterative process as followa:

Since v is not a negative integer and v > - 1 + &p we know from equation (3.31)

that, for all values of m and s under discussion here, we have the relation

2 b 2N
_2- Bm ( v’ s, P) = + - - ] k!.'_,".l‘-)
a 2v+ 48 +2 ~-p 2v+4s +2-7
where & o is the Kronecker delta and Liv s’ p) denotes the integral
’ ’
2 ~w0 K (%) t
1”2 P)_ (L)% (2 448 42 - p)—sin(%pv)j ——1 ne
8 1r o tI(t) v+2m +1-2p| , X
t
- +
X I, 08 -1p - at (4.15)

Substituting from equation (4.14) into equation (14..11) s, we £ind that the algebrzic
equations to determine the coefficients i

b become
m

b - ”z b le:s’ ») =;2-2- (2v +48 + 2 - D)B(v , 5, )y (8 =0, 1,2, vo0) (416)

m=0

The iterative solution of this set of linear equations (which can be shown to

converge if a is large enough - although it is difficult to determine precise limits
for this) is given by

b, =2 bgr) , (8=0,1,2,...) (4.17)

r=0

A
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where
0] L2 (204 4e 40~ pE(L s, D) ORES
= 2
ard
00
b(—'(;r) = L.SE:;’) p) bgnr’l); (1' = 1. 2, }9 n.o,)o (4-’8_)
m=0

The determination of the coefficientsz e cf the paiv of dusi seriss relaticns

* \ - N . N - AY - s
{(L.2) and {L,4) 18 contzined ir s2que s (o 8\ (-’:-,‘ ) (20 18) and (4.1 5); in 2
practical problcom, the chilef difficui-y would lie In the computation of *he interrals

r ~a ‘
(v, p)

b 2., The Reduction of Problem (&) ro an Intesral Eoue tion,

We conzider now the method of Snedden and Sxiveziaw (4 ‘363) by means of w-ich the

4 - v
solurizr o Problem (43 can be reduced to that of z Fradaclm integral ecuation of the
szcend wind,  The cases v = 0, v > 0O have 10 be irezted separately and separate

consideratien ig required for p > 0 and p < Q.

Problem (a) with O< p s i, v > C:

Suprose thar for 0 o < 1,

PR SEOL (19

n=1
for
- / ’
then the problem will be solved if we can determine a(p )\’ by the Pcurier-Bessel

1
- ——
a = R uh u a(u)Jy(uhn)du.. : (4.20)
* n

We ncw represent the functicn a(p) in terms of an auxiliary function g(t) through the
STTIUL 2
y =1 YL 2 v— N
«lp) = -p L g(t)(+ = o) TP (4e21)
3e 2

and redice th: problem to that of determining g(t). Substituting from equation (4,21)
into equation ( l;.,.ZO), interchanging the order of the integrations and making use of
the forpulz (3,.35) we find that

ﬁ P 1 2P
2 (1 - $ph: LY
e === - f eV g () glv)ar, (1.22)
22 J? (an_) 0 24
v n




Subs*ituting these values for the coefficients 2 1n*o zqua-ion (1»03) and, interchanging

the order of 1ntegration and summa‘izn we get

it

i 1 1
3 P 1 V=-zD \e e eV A < .
22 ’3-'> j v : g(r‘/s. Yy oedny ol (‘:7 jahdi=t (o) Uso<t, ( 25)
0 37 zPy =zF ;
- 4w -Y
where 3 (_p 5 4 2) is defined oy ecuation (3.47). Mz usze

.
W
Y
]
——
t-'

where K is the iniegral defined in 8z, Using the formuila (3‘:) we obtain the

1 +5D L 1 -
2 4 V=50 - 1 -9 7 \
+ s FPpw / u’ 2 g('.})Ib i‘ LS (0, u,a) t }du
2V Y =EP,

N
K

Makng use of equaticns (3@5) and 2,,,10\ we see that this equation reduces to

on
N
[ ol
—
]
' n
ot
=
s
—~
[ Y
"~
N
.
|

15 . : __
+ 2 ain Lpz ¢ *+2P v/ v’ I’g(u)K . ( )du, (Lo2i)
0

1 1
7 s Y=2p, ~-35D,

which is a Fredholm integral of the second kind for the determination of +he function

glz)-

Problem (a) with =1 < p< 0, v » C.

v - . L v+ ! PN ;
I this case we multiply both sides of equation {(4.%) by p * 7 and integrate
i respect to p from O to p to ob*ain the relation
w'\
-p=1 . . . N
Ny ooepd, (en ) =F (p), O<o < (4.25)
=




o . L

i

“a

Again we assume that the coefficisn®: can be represented by means of the

{0
[Snn)
o

equetions (4.20) and (4.21) and hence by equation {0,22), Subs*i ng from

equation (4,22) into equation (L.25) and interchanging +he order of summation and
/
(&

A

id
£2 K = 5 5 oL PR T oAt
integration we find that equation (4.25) is equivalent %o the relaticn

1 1 1
PPN : V=7 . 2t - i
227r(t - £p) f 877 g(t)8 © petn. A gl s a)at =T e)l (4426)
40 v + =2Py 2P '
Using equation (3,33) we find tha* this reduces to
I, - 5’ t); #
¥-tp -, 5 +1 Lg( )
P+"§ o=V N - 1
e ) 24T 4 Y L P ‘
- . sin(tpn)e ™[ g wtTRE, L feme)a,
T(1 - lz.p\’ . 1o 3 7+ 2Py —2F
With +ke nsir of equations (3.5), (3,6) and (3.10) we can sasily show that this
reduces o
T+ 1 4_-211 -4 ~
g(t) — Iy 1o s / flw)au; t f
]'1\{ - é"p) 3 2 0 -
5 (om) : 1 () veip Lp-va1 (s . ( )
- i 2 ’ £ S
+ = zirdspw, gluju t X ug alau 1,27
7 /OG vy-—-p’y__:p’ gvbe ¥l

whick 1s agein a Fredholm equation ¢f the second kind,

Eroblem (2) witk =4 € p <0, ¥ = O,

The precedure is essentially the same as that ocutlined above and the final
resul®s we obtain could be cbtained merely by letiing v tend to zero, However a
slight modification of the calculations is necessary whken v = O and the method bresaks
dowvn. for 0 < p< 1.

For -1 £ p ¢ C we assume as before that

%

= 7 ( __li t ;@ - 2 "%P ]
Z 2 UO(PKn) ="9% |, g{t)(v®2 = p %) at, 0<p <
n=4

and this leads to the relaticn

fy = 7 = / I, (e {'Q'[ g(+)(s? = o°)FP d.'t] ap

9] J‘(a A )




which, as the result of an integratinn by parts, can be writtea in the form

5 5 - [ _ ; - 2 ,%D
= . t = g(t)dt - [ eltat Jleat"=-p )% dp.
Y >\ 4;‘" -

(£ An)

,

o}

v

!
m\—x
o]

we find that

32

(4.28)

This expression for a_ is identrcal with the one we should obtain by putiing v = 0 in

(i.22)

. The result of the analysis is the same as the® given by letting v —» 0 in

equation {L.,27) so that we ob%ain the integrel esquation

nP‘-"l r l.p PR
g(t) = - LSRN TR B B OV LIS 't}
£ 01 ~4p) O EFTI L
f 1 1
+< sin(tp ) l glu) w2 P PrEPy 1 1 (6, u; 2)du
jo Ty 2Py mZDPy O

for the detarmination of the function gl i).

we set

Problem (_a_) with p =1, v = G,

To solve the dual series equaticms
q

on

il . ,
D AT () <), 0csst,

li
#

3
i}
-

[

ZanJo(an)—C, 1< p < a,

1 "" Y g4
Y aia) - _.1_ 9 thlt)dt
E anJO(p) n) =olp) = e

papdp A(F <p?)

(4.29)

(%.30)

(4.31)

(4.32)
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for O sp < 1. Then making use of the formula for determining the coefficients in a
Pourier-Bessel expansion and using the rule for integration by parts to evaluate the
relevant integral we find that

U: h(t)at + N j;th(t)dtj: i}i:;n-):j)}'

a'n 2-2 l
2*3%a h )

The integral involving the Bessel function is readily evaluated and we find that

a
n

1
= 2 f h(t)cos(n _t)dt. (4.33)
2.2 n f
aJd(an )do
1 n
If we now substitute this wvalue of a in equation (4.30) and interchange the order of
summation and integration we obtain the relation

(p, t; a)dt=f1(p), O<p < 1

Vi) Faws,

fi
° » T2 7

(Vg

which because of (3.32) with v

1}

0, p =1 can be written in the form

1 1 (s, t; a)at.
2 29 2

I_%’%{h(t); p} =%f‘1 () +3:@-[: (6K,

Applying the operator I.: 1 to both sides of this equation we obtain the Frednolm
29 2
equation

2t re£'(pldp

L
= — —— - u)k 1 1 s U3 & 4.3
h(t) my Avrcamp wJo Rk, s 1 4 (¢ )at (4.34)

for the determination of the function h(t) in terms of which a can be calculated by
means of equation (4.33) and the function a(p) by equation (4.32).

ko3, The Reduction of Problem (b) to an Integral Equation.

We now turn our attention to Problem (Q). We begin by considering the case
in which the perameter p occurring in the dual series equations

Z'}\-f anJv(pkn)=0, 0$P<1’ (4035)

Ne4q

a, Jv(pxn) = f£(p), 1<ps<a, (4.36)

e

2
"
-
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satisfies the inequality O < p € 1. We shall assume that v > O,
When O € p < 1, we meke the representation
2 2, I, (o) = - sa; g(t)(t* - p*)ZPat, (4.37)
n= p

Using the Pourier-Bessel inversion theorem and performing an integration by parts
in the integral involved, we find that
2! ’%PI‘ (1 -%p) 1 ' v-1
a_ = 2 A 2P g(t)t? 2P, (¢t )at
el aa) " e
+1 a)‘n

+ ( Y ) / uf(u)d (ux )au. (4.38)

If we substitute this expression for a into equation (4.35) and interchange the
order of the integration and summation, we obtain the relation

-%p 1 ! v -3p
272Pr (4 -EP)/O g(t)t S, v, v -dp, —dp(Psts 2)at =4 (p), (4.39)

where

¢ (o) = - [f uf(u)s

Vs Vs =P (p,u; a)du.
Prom equations (423 )- (4.21,.) we see that the equation (4.39) is equivalent to
the Fredholm integral equation

1 =
SRS g L PXOIRY

T O B IR O S Capn (4e10)

for the determination of the function g(t).
The case in which the paraweter p satisfies the inequality -1 < p < O can be

treated in a similar fashion, Multiplying both sides of equation (4.35) by

P v+1 and integrating with respect to p from O to p , we obtain the equation

(-]

-p-1
A n & JV +1(p )‘n)

=0, O0<p<1, (hatst)
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If we substitute the expression (4.,38) for the a; s on the left hand side of equation
(4,41) we £ind that

242501 - 40 a6 778 (p, 5 a)at = 4, (o), (4242)
[}

Vv, v+, v=3p,=3p ~1
where 0 < p < 1 and ¢!2(p) is defined by the equation

(p,u;a)du, 0sp <1,

0 ) == [ urtws,
1

s V+1,v, =p~1

Applying the analysis involved in the derivation of the equations (4.26)- (4.27) to
equation (4.42) we f£ind immediately that the solution of the problem is reduced to
determining the function g(t) from the Predholm integral equation

2p+1 t-2v -~

r(1 - £p)

g(t) = To, ~4p - 1 { e "y _(0)s t}

2 4 (1 ! v=-%p Fp-v#H .
+ ;ain(rpv) [o g(u)u ¥ K, —ip, v-dp,d t» W5 8)au. (4ads3)

{
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5., Dual Relations involving Dini Series.

If the function £(x) is defined in the closed interval [0, 1] , its Dini
expansion is, in general,
- -]

me J (n x) (5.1)

m=1

where {kn is the sequence of positive roots (arranged in ascending order of
magnitude) of the transcendental equation

A I(0) +HT (M) = 0, (5.2)

H and v being real constants with v 2 - 2. The coefficients bm are given by
the formula

2

2\

" = (X; - +H2)J:('A,m) [o t£(t) Jv(t)‘m)dt‘ (5.3)

The expansion (5.1) holds if H +4v > 0; if H + v = 0 an initial term

1

2(v + 1)x”/ £V * p(t)as (5.4)
o

has to be added to the series, while if H + v < O the equation (5.,2) has two

purely imaginary zeros (-_;- i)\o, say) and an initial term

leolv(lox)

"7 20 —EIOT (2 ) f: t£(£) I (t 7‘0)‘“ (5.5)

has to be added. (Watson, 1944; Chapter XVIII),
We now consider the relations

ZCH lnp Jv(p)\n) = f1(p), O<p<ao (5.6)
Nxg
ch Jv(pxn) =fz(p), c<ps1, (5.7)
nN=1

Solution in the case -1 £ p < 0, ¥ > O,

We assume that when 0 € p < ¢
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o

- 2 2. 1
Z%J,,(pl,,) --p? 2 f g(t)(t -p )ZPat.
ap Jp

=g
Prom equation (5.3) it follows that
a2

1 1 1
o, = = d — {[ t2 (£) 3 (2 Jat »,253’7\‘;5p r(1 +3p) x
(xn -v® +H )Jv(xn) c

c 1
x /o g(t)t"*2F g oip (tln)dt}- (5.8)

If we now substitute this value of ¢, in equation (5.6) and interchange the order
of integration and summation, we obtain the relation

1 c
z P 1 v +3p - <
22P p(4 +2p>[o €6 8 5, 1 15(Ps 8138 =4 (), 0<p < o (5.9)

where the function

1
b0 =00+ [ e 08y L, (s, O (5.10)

is knowmn,
Now from equations (3.24) and (3.29)

™ (p, )_ 2P u

"‘2P 'E’P 1 H -t
L H, v, vekp, (_ nk (b? - t?) (p-1)

2
— sm(zpﬂ) Kv H, v, V+“P —P (Ps t):

where H(x) is Heaviside's unit function, so that equation (5.,9) can be written in
the form

I,_1, %P[tp g(t),p]

__2- 14p=-v _2 padp
Tt +42) ‘}0 ) 7 sm(%w)/ voE, v, v +3p, 2 PP RE(E)EV TP at

which by application of the operator I.v'_; . -ip can be written in the farm
]
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- M-V lp 1
2P 22
g(t) = - I%V,lp{f" (p); t}+(-;> L uf (u)Sv H, vslp, v (t,u)du

I'(‘I +§'p)

N

;
2 —Z-Pg . V+2P
- (76) o sin(} mr)] g(u)u Kv H, v +ip, v +4p, O (t, widul. (5.11)

Equation (5.11) is a Fredholm equation of the second kind by means of which
we can determine the function g(t) and hence determine the constants C (e

Solution in the case 0 < p <1, v > Q.

If 0O< p <1 and v > O the above procedure has to be modified slightly.,
Multiplying both sides of equation (5.6) by py""I and integrating with respect to p

from O to p, we see that equation (5.6) is equivalent to the equation

[~e

n n

P
e A2 (o)) =p""1/ £+ (t)at, 0<p < c. (5.12)
' ¢}

3

-

Substituting the expression (5.8) for ¢ into this equation and interchanging the
order of integration and summation we obtain the relation

22PI‘(‘I +2P)/ v+2Psv H,v 41, vedp, (p,t)g(t)dt =4,(p)y Osp<c (5.13)
where
p
-v=-1 v+
¥,(p) =p /o t°7 ' (t)at +[c tf(t)sv H, v+1,v,p-1Ps DA (5.14)

for O s p < ¢, Since

L
s”: Hy v#1,v+4p, 4p -1 (o5 t)

1p velp (Lo 94

r(1 - 4p) o7 TH -0 *;Sm‘”")“ H, v41,v43p,ipAPH (5:15)

it follows that we may write equation (5.13) in the form

11-%p {tpét);ﬁ’}

V=2,

PPV

= r(1 1) ramed 17 o) == sm(a}pw)[ t"‘*“va H, v, v+1p, 4p _ (e tle(t)atl.  (5.46)
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Applying the operator I -L,
of the results ( 3.6 ), ( 3

equation

-ip to both sides of this equation and making use
2
5 ) we see that this equation is equivalent to the

1=p PV

2 .
Felt) - (1 +4p) EiE? ”P‘1{$z(p)’ t}

4

2P 1-v=2p[C va+ip *

- * t 2 2 K t,u)du].
. sin(}pn) ou g(u) v, H,vedp, v +1p, O( »1)

Substituting the expression (5.14) for ¢t2 (p) we see that this equation is
equivalent to the Fredholm integral equation

1=p ,~2v =1 p
g(t) = 2 t I, 1 _1{/ uf (u)du; t}
r{(1 +4p) 2P o

uf (w) S

4
=-zP -v=%p 1
+ 2 t [ (t u)du

r(1 +$v) P Hy v ez, v, e

c

PUIRE I INERES 3

C o 1
i x K t u’i? a .
ar (1 + %7) sm(zP ")[o v, H,v+%p, V43P, 0( sulu g(w)au (5.17)

by means of which the function g(t) can be determined,
Solution in the case 0< p <1, v =0, H >0,

We now examine the dual series relations

o0
—-—
L eaPa(er)=£(), Osp<ec, (5.18)
Nixzq
=
Lcn J(er) =£,(p), c<ps1,
Ny

for 0< p €1, it being assumed that the{)sn } are the positive roots of the.
equation (5.2) withH + v > 0. We make the representation

;cﬂJo(p }"n) = -;’1“32; [p S(t)(tz‘Pz)%Pdt: Osp<e (5.19)




L0

from which it follows, by equation (5.3), that

2 2 [ eetom,tendee - [Caoa ) [ate-nBale

c =
"0+ EDI(A)

Now

o]
[GJ (p2 )i[ 2(£)(¢° -pz)%Pd’c dp
o © n‘}op P)

c c ot 1
-/ g(t)tpdtm,,[ g(t)dt[ 3. (on )" - p%)ZPap

o
and
[o 1 p)'n s p= )‘n k1""12-P iz'P n
n

so that

zx
e, = [/ t? (t)J(tk )at

(o 2)Jz(k )

1 -] c 1
+ 22PI‘(1 + %p))\nip / tszlz‘P (t )\n)g(t)dg . (5.20)
o

This is exactly the expression we should have obtained for c, if we had put

= 0 in the right hand side of equation (5.8) but it is arrived at by a different
method; the rest of the analysis follows the same course as that leading to
equation (5,17) and we find finally that g(t) is the solution of the Predholm
integral equation

g(t) = :I%_z—f_; 0, 4p- 1 {[: ufi(u) dug t}

2'15:9 ‘t1 - %P
(1 +%p)

1 L
f S t
[c " z(u) 0, H, p, 0, %P( , W

21 - %P 1';1 - %P C o %P
- K
r(1 +%p) sinlir ”)/o 0, H, D, 3D, ol tsuw)u® ™ glu)au. (5.21)
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Solution in the case v + H = O.

The special case in which v + H = 0 is particularly important, The dual
Dini series then take the form

o0
v P
ac p- + Z )\n anv(an)
n=4

£ (o), Os<p<ec, (5422)

a0

v
c P+ Z anv(pxn)

n=1q

£(p), c<psi, (5.23)

where =1 < p <1 and A, A, ... are the positive zeros of I, ., (N). The
constant a would appear to be indeterminate, but we saw previously (Cf. equations
(2.27), (2.28) above) that in some physical problems its value is known ab initio;
in other problems its value may be derived, at a later stage in the analysis,
from some physical criterion such as that a certain component of stress must
always remain finite.

When O < p < 1 the above analysis can readily be adapted to meet the present
situation and we find that everything goes through easily; in the end we find
that the solution is given by equations (5.8) and (5.17) if v &0 and by
equations (5.20) and (5.21) if v = O except that in equations (5.17) and (5.21)

* *
the functions K u, v) and S
v’H’ﬂ:Ysﬁ(’ ) vyH, B, v,

v) and S (u, v) respectively, In other

5 (u, v) are replaced

byK”+1: Bs ¥, S(u’ v+1l, B, ¥,

words when v £ O the equations have solution

1 1 c
o, =2(v + 1)/ t¥* 1 (t)at + 2P(v+ TG+ 1) [7 2v+P)an  (5.28)
c T(v+ip+1) o

o = —2 {/1 t£ ()T (A t)at + 2J"Px'5‘9r(1 +%‘p)/c t"*‘%Pg(t)J . %
n I xn) c 2 Voo n o V43P
x (n")at} , (5.25)
where g(t) is the solution of the Fredholm equation
[
gt) = x (¥) - [ L(t, u)g(u)dy, (5.26)

where the free term x (t) is defined by the equation




_g1 -pt-2v-1

P
x(t) = I, U uf (u)dug t}
r+4p) P70

o"EP 41 =V = 2P
+

r(1 +2p)

1
d
/c ufz(u)sv+1,v+%p,_v,%p (t, u)du

_22-P(v +1)aT (Fp+%v +1)

4
uf (u)éu (5.27)
(v +2)Tr(Ep+)r(p+2v) [c )

and the kemmel is given by the equation

oM =Epyl -V =3P V+ZP

B ) - 7T (1 + 4p)

sin(zpn)K (ty w)

1 1
» V+ 2P, V+ 2 R0

- —y-1 2
22 PI‘(v+1)I‘(%p+%v +1)tp v 1uv +Pa

Mp +2v)r(Ep+ v +1)

+

. (5.28)

In particular if we put v =0, p =1, fz(p) O we see that the dual series

equations
-]
ac, + Z A oc J(pN) =2(p), Osxp<c, (5.29)
n=4
-
e, + L ano(pln) =0, e<p s, (5.30)
n=1

where the {k n_} are the positive zeros of J 1(7\), have solution

c = ¢ u)du c = < ¢ sin
o=z " uetwlan, TR [ somintea e, (5.31)

where g(t) is the solution of the Fredholm equation (5.26) with free term

_2 [P e
x(t) = - [o -1 (5.32)
and kernel s/z2
L(t, u) = 2au +(3) / &) sinh (ty)sinh (uy)dy. (5.33)
¥ o I(y)
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Solution in the case p = =1, v =H = 0.

It is difficult to derive the solution in the general case when H + y = 0
and -1 £ p < 03 we shall consider only the two cases which are of most interest
physically. The first problem we shall consider is the solution of the dual

equations

aec + Z k;1an°(pkn) =f(p), Osp<ec (5.34)
n=1
c, + L c, Jo(p).n) = 0, c<p <1 (5.35)
n=1

in which the function f(p) is prescribed in (O, c), a is a given constant and
X1 s M, )\3, «eo are the positive

J1(X) =
We suppose that when 0 sp < ¢
co+z c J(pl)—-——- M (5.36)
= pdp P Af(%® - p?)
then
c 5 c
c = 2/ g(t)at, ¢ = ——— / g(t)cos(tn )at. (5.37)
° o "oa(n) Jo n

Substituting these expressions for the coefficients c, into the left-hand side of
equation (5.34) we find that

20 [ altlas + g(t)at(z Z iﬂ:,:o:(;” _tp), Ocp <o, (5.38)

However it can be shown that

= (P - ) EH(p - t) - 2(1 ~ t2)F

) i I (pn Jeos(tn )

R=q )‘n J:( kn)

2 j"’ K (v)

ene cosh ty {21‘,(y) - yI,,(py)} ay (5.39)




Ly
so that the equation (5.38) is equivalent to the relation
c
—mt— = g(u) B(u, p)du + £(p), Ocsp<ec (5.40)

A (p?

where the funotion H(u, p) is defined by the equation

)
B(a, p) =2 /(1 - u?) - 2a 4= f = coan()21{5)- 77, (o7) Jay.  (5.41)

y 7T (v)

Solving the equation (5.40) for g(t) as though the right-hand side were a known
function of p we obtain the integral equation

&(t) - [ sk (u, e = x(0), (5.42)
' —af(u)an
_2 uf{u)du
x(t) - dt/ T - o) (5.43)
and

K1(u, t) 24 * _pH(u, plap

matde Wt =50

{ V(1 - u®) - a} [ . ) cosh(uy){ 21,(y)-ycosh(ty)} ay.

" yI,(y)
Using the integrals

[“ ﬂ’fl (coshay ~ 1)dy = %1[1 -G - az)}

we find that
K (y)
K (u, t) == <1 - a) +—[ = {zx,m - yooshuy coshty ] ay. (5.4)
yI (y)
Solution in the case p = =1, v = ~H =14,

The second problem we shall discuss here is that of solving the dual series
relations *

ac, p +z 3% c, Ji(pkn) =f(p)y Os<pc<ce, (5.45)

n=q
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c P +Z ani(pxn)=0, c<p <1 (5.46)

n=4

where, as before, the constant ¢ and the function f(p) are prescribed, but now

Aoy M5 eoa are the positive roots of the equation

Jz(x) =

We make the assumption that

C
c P + cJ(p)\)—-i —Mt——,Osp<c (5.47)
° ap Jp M(t* -0 ?)

n=+

from which it follows that

= 8[: ug(u)du,

c
c, =+ / g(u)si.n()\nu)du. (5.48)
J*5 () Jo
1 n
Substituting these values for the coefficients a in the left-hand side of
equation (5.33) we obtain the relation

8ap /oc ug(u)au + [: g(t)at [2 z 7, (o3 Jein(tn ) } =£(p), 0 <p <c, (5.49)

ns1 Kan(}\n)

Considering the Dini expansion of the function (of p ) defined by the right hand
aide of equation (5.50) below it may be established that
> T (o )sin(t ) tH(p = t)
L B (h,) e 6F - D)

2 = K (y) i
| =0 sian(e){bo1 () - ¥1,69)] 0. (5.50)

Inserting this expression for the infinite series occurring in the left-hand
side of equation (5.37) we see that this latter equation reduces to

/ —ta(Bat o, / g() E(s, p)du

/(0% - ¢2)
where
, 2 to K (y) .
H(u, p) = bup*aA/(1 - u?) = 8ap? u+ = —3-—-sizm(w){4p L(y)=p .(ny)} dy.
v yI(y) !
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This in turn leaéi.s to the Predholm integral equation
y
. c
ta(t) - [ K(u, tau = x () (5.51)
)
where .
2 4 p° £(plap
x(t) === A (5.52)
Tdtdo A(t -p°)
and:

K(u, t) 24 [ __2B(u,p)p
wdtdo  A/(tF - %)

S LA - ) - Bt
m m

2()i8t21() t; :mh( ); :nh(u
— - si % si .
"2 Q yIz(y) 2\ y J y)dy

Using the fact that

%/QKz(y)<Sin%x- 6)ay=0-94(1-062)

o

we £ind that
16 L e K (y)
K(u, ) ==t - 22) +— [Bu‘i'zI (y) - ty sinh{ty)sinn(uy)] ay (5
: ty)sinh(uy)! 4y (5.53
T 7 Jo yI,(y) ) { J )

6. Dual Relations involving Sin Series.
AN, A —

We saw in 2 (Cf. equations (2.50) and 2.51) that certain mixed boundary

value problems concerning plane harmonic functions lead to the solution of dual

series relations of the type
o0

E nP ansinnxzf(x), 0¢£x ¢Cc (6.1)
=
QO
g a_ sin nx = 0, c¢x<m, (6.2)
=
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In this section we shall consider only the cases p = + 1 since these are the

ones which occur most frequently in applications,

6¢s1s The case in which p = -1.

If we assume that when O s x < ¢

o

Z a_ sin nx= g(x) (6.3)

n=4

then the constants a, whose values we wish to determine are the Fourier sine
coefficients of the function defined by the right-~hand sides of equations (6.2)
and (6.3). Hence we have

=2 [ at) siatavian, (6.1)

The problem of determining the a (or the g(t) seems to have been considered
first by Tranter (19591) who made the integral representation

g(t) = £(1) sin(2t) (1 - sin® Lt cosec? —ch)-%

,/1 &'(s) sin(? x)ds (6.5)
T 4(s? -T?)

where T, the lower limit in the integral on the right is an abbreviation for
sint t coses}tc. Substituting this expression for g(t) into equation (6.4) and
then substituting the resulting expression for a_ into equation (6.1) it is
possible to find an integral equation for & (s) whose solution enables us to
determine the function g(t) and the set of constants a . Tranter's analysis
is very complicated and for that reason we shall not repeat it here. It turms
out in the end that

1 - 8° sin® e ' pf 2{sin”'(psinic)pdp
£(a) = 2= A /'s - i . (6.6)
rs.sin’® Lec ds Jo 4/[(:32 - p%)(1 -p2%sin %c)}

The function £ (s) is determined in terms of the known function f(x) by means of
this equation; g(t) is then found from equation (6.5) and the constants a_ from
(6.4).

Recently Williams (1963) has given a much more direct and simple m;thod of
solving the pair of equations (6.1) and (6.2). Substituting from equation (6.4)
into equation (6.1) we find that the unimown function g(t) is the solution of the
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integral equation

Cc

/ g(t) K(t, x)dt = 7f(x), Osx<e (6.7)

[o}

in which the kernel K(t, x) is defined by the equation
K(t, x) =2 z n ! sin(nx) sin(nt)
N=4q
_ 1og| 2in &z + £)] (6.8)
sin H(x - t)

By an ingenious method Williams reduces this kernel to a form which at first
sight seems to make the integral equation (6.7) more complicated but which, in
fact, enables us to solve it in explicit form, We consider the integral

L. /min(t, x) tan(# u)du
o M{(cos u = cos t)(cos u - cos x)}

The result will be symmetrical in x and t so for convenience we assume that
x > t and consider

-[t tan ¥ u du
o ,/{(ooau-cost)(cosu-cosx)}.

If, in this integral, we change the variable of integration from u to v where

v = tan }t- tan’%u

we find that

tanz ¢
I = sec(}x) sec(}t) / * V& taf; - tan® }t )

This integration is elementary and leads to the result

tanvl-xq-tan%tl

I = % sec(%x) sec(}t) log

tani;x-tan{;tl

= £ seo(}x) sea(} t) K(t, x).

In other words
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min(t, x) tan fudu

K(t, x) = 2 cos$ x cos} tf . (6.9)

o /\/{(cos u - cost)(cosu - cos x)}

If we now substitute this expression into equation (6.7) and interchange the order
of the integrations in the integral on the right hand side we find that equation
(6.7) can be written in the form

tan(Zu)du c cos(3t) g(t)at

x
1
cos§x/
0 ;\/(cosu-—cos x) u/\/(cosu-cos t)

= $nf(x), Osx<ec. (6.10)

(ce. Pig, 5 below ). Hence if we write

o) - ¢ cos(%t) g(t)at (611)
u 4/(005 u - cos t)

equation (6.10) becomes

z  tan(fu) G(u)du

=tnsec(tx) f(x), O<sx<ec (6.42)
o 4/(cos u - cos x
|
x
- . %
0 c
Fig. 5

Using equations (3.1.22and h) we see that the solution of equation (6.12) is

u sin($x) f(x)ax

G(u) = cot 3 - (6.13)
u=co.2uduj04/(cosx-cosu) 1

and using equations (3.453 andg) we see that the solution of equaticn (6.11) is

- sec L c
g(t) = -_%€° it 4 gin u G(u)du . (6.14)

T at /t a/(cos t - cos u)

We can write this result in another way. Integrating with respect to t from x
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to ¢ we find that

c sec tx rc sin u G(u)du 1
[ g(t)at = / +=—| sinuG(u)du x

x T x l\/(cos x -cosu) 2mix

1 1
u sec zy tan zy dy
. (6.15)

x  #/(cos y - cos u)
The y-integral is easily reduced to the form

y=u

1 [u sec® Ly tan Lty dy

v, = ﬁ[— sec’l uw/ (1 - cos’Lusec’ly)
2

x A/(1 - cos® fusec® iy y=x

= sec(%x) sec? (Fu) /\/(cos x - cos u).

Inserting this expression into the double integral on the right-hand side of
equation (6.15) we find that

tan($u) G(u)
[ g(t)at = - cos(zx) / du .
x

x A/(cos x = cos u)

Differentiating both sides of this equation with respect to x we find that

2u) G(u
g(x) = ———COS(§I)/ Vtan( ) o) du, Osx<e, (6.46)

(cos x - cos u)

where G(u) is defined by equation (6.13).
An alternative solution has been derived by Srivastav (1963) based on t:e
integral representation

‘e
g(x) = - < cos ix / g(t)at , O<x<e (6.17)
dx x A/ (cos x = cos t)

of the function g(x) introduced in equation (6,3). Substituting this form into
the right-hand side of equation (6.4) and integrating by parts we find that

n = e /c cos(nx) cos(fx)dx ¢ g(t)at
(o}

x q/(cos x - cos t) ’

Interchanging the order of the integrations we find that

a o m—

2n rc t cos(3 x) cos(nx)
(t)at / ax. (6.18)

T Jo o A/(cos x - cos t)
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From the representations

AZ ft coaln -~ i)xdx 42 (7 sin(n - $)x dx
I’m.1 (cos t) = f p—

(6419)

7 Je p/(cos x - cos t)—-u t A(cos t - cos x)

of the Legendre polynomial (Whittaker and Watson, 4927, P.315) we immediately
deduce that

4%2-/: cos(%x) cos(n x) o %’2-[,, cos(}x) sin(n x)

Iy I\/(cos X = cos t)

= %{PM (t)+B (t)} (6420)

/\/(cosx-oos t)

so that

a =$ /: ¢(t) {Pﬂ_1 (t) +Pn(t)} at. (6.21)

Substituting this expression for a  into equation (6.1) we £ind that this
equation is equivalent to

Cc
f #(t) L(t, x)at = f(x), O<x<c (6.22)
(o]
where the kernel L(t, x) is defined by the equation

00
L(x, t) = A Z {Pn(cos t) +P (cos t)} sin(nx).
V2 &
Now it follows immediately from the second of the equations (6.20) that the
series on the right hand side of this equation is the Pourier half-range sine
series of the function cos(%x) H(x - t)

L(ts x) = 0 <sx
AN (cos t - cos x)

A

LD

Substituting this form for the kernel L(t, x) into equation (6.22) we see that it
is equivalent to the equation

x $(t)dt

0 l/(cost-cos x)

= sec($x) £(x), Osx<ec,

Using equations (3.42a and b) we can invert this equation to cbtain the formula

¢(t) Ei t si.n(—;-x) f(x) 4 (6 )
Cxoat o #/(cos x = cos t) * 23

for the determination of the function ¢ (t). If we introduce the function G
defined by equation (6.13) we find that

¢(t) = tan 1 t G(t). (6.24)




oo b ome GEES GEN DIRM GEe o S E e

I3

»

52

Substituting this expression for ¢ (t) into the right hand side of equation (6.17)
we obtain, once again, the equation (6.16) for the function g(x) in the interval
(0, e).

6,2, _The case in which p = +1.

To solve the equations

£(x), O<x<ec (6.25)

e
)

P
E.
H

0, c<x<7 (6426)

e

39’
B
:

we integrate both sides of equation (6.25) with respect to x to obtain the
equivalent relation

) a1 - cos na) - [ fwa, ©0<x <o (6.27)

nN=4q

If we now assume that, in the interval 0 < x < ¢,

z a sinpxs= sin($ x) /c _g(t)at , (6.28)

#/(cos x = cos t)

Nxq

it follows from the theory of Fourier series that

c c
a = 2 / sin(nx) sin(%x) dax g(t)at —
T do x M(cos x - cos t)

1 /- c S()as /t cos(n - 3)x - cos(n + 3)x ax.

md o o V(cosx-cost)

Making use of the integral representation (6.1 9) for the Legendre polynomial we
see that this equation can be written in the form

a = ‘j‘z' : g(t) [Pn-q (cos ¢) - P (cos t)]dt. (6.29)

If we substitute this expression for the coefficients a_into equation (6.27) and
then interchange the order of summation and integration we obtain the integral
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equation
/c g(t) s(x, t)at = /x f(u)du, O<x<ec (6.30)
(o] [o]
where
—1-' - COS X cos - cos
s(x, ©) - = }: (1 - 00 n0) {7, (o0 1) - 7, (oos ©)]

.Y {7, Goon ) -, (on ) Joom nx.

=4

By considering the half-range Fourier cosine series of the function

sin(% x) H(x - t)
(6.31)

A/(cos t - cos x)
we can show that S(x, t) is equal to this function. Substituting the expression
(6.34) for S(x, t) into the left-hand side of equation (6.30) we obtain the
integral equation
x x
glt) at = cosec(} x) f f(u)du (6.32)
[+]

) I\/(cost-cos x)

for the determination of the function g(t). The solution of this equation is
given by equations (3.422 and b) in the form
24 p cos(% x) -

o - — x i u 6,
g(t) 7 dtJoe V(cosx-cos t) dju £ )du. ( )

643.  Solution of Equations of the Second Type.
The solution of the equations

anansinnx=0, O<x<eo (6.34)
n=1
-]
z a, sin nx=f(x),c < x < ¥ (6.35)
n=q

can readily be deduced from that of equationa (6.1) and (6.2). If we change the
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i d write («1)""" P A
independent variable from x to y = 7 - X and wril - na =4,
y = @ - c we f£ind that these equations are equivalent to
-]
Zn‘pA“sin ny=f1(y), Ogsy<y (6.36)
N=q
ZAnsinny=0, y<y<aw (6.37
n=4q
where
£, (y) =f(x =~-3). (6.38)

If p = 1 the solution of equations (6.36) and (6.37) is given by equations
(6.21) and (6.23) in the form

A= ;’Lz-/oy ¢(t) {Pn_‘ (cos t) + P, (cos t)} dt (6.39)

where

5(4) 2 4 ¢ sin(} y) £ () . (6.40)
T @ atde #/(cos y - cos t) ¥ )

Reverting to the original variables we find that
w .
a = j; /c #(t) {Pn (cos t) =P, _ (cos t)}dt (6.141)

(4) 2 a 7 f£(x) cos(ix) ;
= . —— dx .
’ 7 dtJe 4/(cos t = cos x) (6.42)

is the solution of the pair of dual integral equations

z na sinnx=0, Osx<e (6.1.-3)
n=q

}ﬂansin nx= f(x), c<x<smw, (6.44s)
[

=4

If p = -1 the solution of equations (6.36) and (6.37) is given by equations
(6.29) and (6.33) in the form

A, =§§/: ¢(t){rm(cos t) - P, (cos t)}d’c




where 2 4 re cos(%y)

g(t) == — dy/‘“f1 (u)du

7 dtJo A/(cos y ~ cos t)

Reverting to the original variables we find that

8 - ;n—z /c o) {2 (con ©) 4B, _ (con 1)) at
with

p(t) = - - —
7 dt

os t - cos x) x flu)as = - T J', V(cost-cosu)

/» sin(} x)dax m sin($ tb«u cos(Fu)f(u)du
W (c

is the solution of the pair of dual integral equations

Ld

-1 .
gn a sinnx=0, Dsx<ec,
n=1q

-]

% a sin nx= £(x) c< x<w,

n
n=xq

6.4, Sine Series Analogous to Dini Series,
Pinally we shall consider the solution of the pair of dual integral
equations
o
(n =3P ansin(n -3)x =f, (x), Oszx<e,
n=g

zansin(n -3 x =fz(x.), c<xswW,

LEX]

where p = + 1, following the method of Srivastav (19631).

PR A
when O £ x < ¢

o

& x 4/(cos x - cos t)

from which it follows that

2 sc ()
a":;[o aln(n--l-)x.sinxdx[x M(oos:j:os "
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(6.45)

(6.46)

(6.47)

(6.48)

(6.49)

(6.50)

Case (a)': P= 1, f (x) £ 0. To find the solutica in this case we assume that

Zansin(n-%)x=sinx/c 81(t)dt 20 sx<c (6.51)
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1 c t cos(n -%)x - cos(n + £)x
=; jo g'(t)dt [o M(cos X - cos t) il

Using equation (6.19) we find that
‘\

a =71§ [c g'(t) U -P{(cos tﬂdt

° 7 (6.52)
a =;}E [c g1‘(1-,) —Pn-z (cos t) -P, (cos ﬂdt, nsz2. )

If we integrate both sides of equation (6.49) from O to x < ¢ we get the relation

ianﬁ - cos(n - -;—)x] - ] £ (u)au. (6.53)

Substituting the expressions (6.52) for the coefficients a_ and interchanging the
order of summation and integration we obtain the relation

#5 [: g1(t) s(t, x)dt = /x fi(u)du (6.54)

0

where

8(t, x) =E. - cos(%x}E - P (cos t)]+i {Pn_z(cos £)-E, (cos t)}[‘l —coe (n-%):s} .

Now it is easily shown that

L

N2sinxBx=t) [0 . p (cost)cosldx cos t) os t){cos(n-3
2 B t { Pq( t')J (% ),Z‘{pn( Y -B,_{c t)} (n-2)x

A/(cos t = cos x)

and that

Z [Pn.z(cos t) = P (cos t)} =1 + P (cos t)

n=2

from which it follows that

8(t, x) = ZE - cos(%x)] +%-:—§(§——ﬁ% .

If we substitute this expression for S(t, x) into equation (6.54) we obtain the
integral equation
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x g (t) d+ b'd
sin x 1 =/ £ (w)au - A/—Q-/C(‘l - cos¥ x)g (t)at
A/(cos t - cos x) o ! 5 !
for the determination of g’(t). If we write
c
Y, =/ g, (u)du (6.55)
)

and solve this integral equation by making use of equation (3.1022) we find that

dx A2y d,. 1 -cosix
g, (t) = -—[ f (u)du f e z adx. (6.56)
7 dt J, A/(cos x = cos B Jy 7 dtlo 4 (cosx - cost)

To obtain the value of the constant Yy, we integrate both sides of this
equation with respect tc t from O to ¢, In this way we get the equation

f (u)du (6.57)

A2 ,c (1 =-cos & x)dx 1 ,c dx
n{ J-2 1

1r o NM(cos x - cos c) '§ oV(cosx-cosc)
from which to calculate Y,

Case (b): p =1, f1(x) =0

In a similar way we obtain the solution in this case by writing

x g (t) dat
/ , c<xswm, (6.58)

= a
Z(n - %)a" sin{n - $)x = - — sin x

dx ¢ A/(cos t - cos x)

which is equivalent to assuming

x)

a, =71§/c g (t) {1 + P (cos t)} at

. (6.59)
a = #2- /c gz(t) [Pn (cos t) - Pn_z(cos t)} it
By a procedure similar to that outlined for case (a) we can show that
1.4 g f (x) ax
g, (t) ==— & . (6.60)

mdt Jt N(cos t - com x)

Case (c): P==1,7°f (x) =0

To derive the solution in this case we begin with the assumption that when

- d fc gi(t)dt
)« staln - B = - — [ ——t (6.61)

#(cos x - cos t)

0 gsx<e

=4
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which is the same as assuming that

n-% re )
& = m—— 18 t P
a v fo g1(’c) Pn-1 (cos t)dt (6.62)
(a = 1, 2, ees)s Substituting this expreasion for &, into the series on the
left-hand side of equation (6.49) with p = -1 and using a procedure similar to

that adcpted for case (a) we can show that

1.4 ¢+ sinxfi(x)dx

g (t) == — . (6.63)
! 7 d590 A (cos t - cos x)
Case (d): » = -1, f1(x) = 0,
To sclve the equations

z (n -5 a, sin(n - $)x = 0, ds<x<ec, (6.64)

nN=¢
o0 .
Z a nsin(n -%)x = fz(x), c<xsT, (6.65)
nN=x4

we integrate squation (6.65) with reapect to x from x( > ¢) to # to cbtain the
equivalert relation

S e "
/. 1) 1
\3 -3 a cos(n - g)x = [ £ (u)du' (6 66)
We now set
o
o) a min(e - oo [F S 2t
N - E a nsm(n - 2-) = » c < X < T (6.67)
= ¢ A(cos t - cos x)

which is equivalent tc the assumption

n-% L
a == gz(t) B_, (cos t)at. (6.68)

A/2 c

Inserting this expression for the coefficient a pin the series on the left hand

side of equation (6.66), interchanging the order of integration and summation
and making use of the result
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B(t - x) = z P (cost) cos(n-)x (6.69)
A/ (cos x = cos t) = n=t
we f£ind that x ) x
g () =-1& [ sin x &x £ (u)du. (6.70)
2 7 dt t V(cos t-cosx)Jdx °

After a 1little manipulation it can be shown that

(6.71)

2gint ,w fz(u) du
g, () = - /

u t A/(cos t - cos u)

7. Dual Relations involving Cosine Series,

In this section we shall consider dual series relations of the type

- -]
jal
%kao-rL n* ancosnx=f1(x), Ogsx<ec
n=q
[
z (x)
za, -+ ancosnx=fzx, c<x <

n=

and other dual egquations involving cosine series. We saw in §2°3 (see equations
(2.45) and (2.46) zbove) that equations of this type with the value of A
prescribed arise in the analysis of certain physical problems. In what follows
we shall always assume that the value of the constant A is among the physical
data of the problem. We shall follow the treatment given in Srivastav (4 9632).

Lsle The case in which p = 1.

We begin by considering the pair of equations

0
%xao + Z na cos(nx) = £(x), O<x<ec (7.1)
n=4
[ ]
%ao+ Z a, cos(nx) = 0, c<x<7. (7.2)
=1

Integrating the first of these two equations with respect to X from O to x we
obtain the relation =

’gkaox+z a, sin(nx) =F(x), O<x<ec (7.3)
A=t
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order o7 *tha summation and in*egratinn we chtar the reiatiom

rc ‘r 1 ’ . \‘I. . f; \ ’
gluit T {nu) einflaxjido = Px) - Fax, glojdu, C<¢ x <o, \ 75
[s) S H Jn
‘!,.
TMsing *he reavi: {7 36) we see that thin acuaticn (s eguivaient
rx / rC [s] ~ .
: wldn .o ’ f [~ &3 T )
: --‘}\'32-'-":‘—= F(x) - Fix! giudan +i-‘ glu)du i ",,IL’.(S,},I, x
¢C ,‘.,A/;x ~u! 40 0 o qi.nh(wy)
R A RN
b ) Vi ‘uridw NDe %= ¢,

LA}
If we cegsvé “bia am ao integral cof eguaiirn of A=l “ype whose right-hand side

ia A Joown favation o7 X we obtain the Fredholm equation

gw) o g} R owjdr 2 hud 0 cw e, {(7.7)
‘o

where b{u)} denotes tha free term

" YR [R5 o
£ ? E r 3 .' " et m o | LN o \
h{u, = & ~° k 'L _:J..:'.-‘.:A IR ..,.':l‘ %'J. .’lx.:_ (7 8)
T oAU - ) ~din A/ e x D
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ard X(%. u) denotes the kernel
r” y -n ( N
) A A= S ( + < - 1 ) .
K(t, u) = ujc S ANET) IG(ty_; In(uy)dy F Au 7-3)

An alternative solution leading to an integral equation whose solutiocn can

bte reduced to simple guadratures has also been derived by Srivastav. We put

o
X (
T a, +(-\ a cos nx= cos{}x) f slt) dx -, O xxc<ec (7.10)
i n/_’ ‘ iec A(ecs x - cos 1)
from which it follows that
re [¢] -
a == i lt)at. a_ ==t | ¢(t)P fcos t) + P (cos %)jdt. (7.11)
n A2 J'o ' noAZ o ' n [} )

Substituting these expressions in equation (7.3) w= obtain the relation
o
[ 1o ¢ < N
-~ x| ¢>(t)dt + = ¢(t) / Pn(ccs t) + Pn '(cos t,’? sin(nx) dt:F(x), O<x<e
2h2 o N2 io et A o .

o

e

from which, as in the derivation of equation (6.22) we deduce that

[e ,%x)[:‘ #(t) dt

A X ; '¢(t)dt + cos{

=F(x), 0 <x<ec:
2N 2 Jo JoM(cost-- cos x)

Inverting this equation by means of equations (3,42 aand b) we find that

(%) 2 4 g+ sin(f x) P(x) ax 1 d p: x sin(} x) dx
¢ t) == — | - -—A\pg —— .
7 atdo Af{cos x -cost) w °atle A(cos x - cos t)

To determine s we integrate both sides of this equation with respect to t from
o -

O %o ¢ to obtain the equation I

.
g

ao = (7-12)
1+ M1
where A2 [c sin(} x) F(x) dx 1 }~~c x sin(% x) ax

T = ==

]

T Jo A {cosx - ccs ¢) T /\/2-/0 A (cos x - cos )

Hence we have
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2 4a ,. sin($ x) P(x) dx A I d x sin(+ x) dx
(t):‘ _..f_’ z ) ) - : -"[t - 2 (7-1#)
T dt./. A/ (cos x - cos t) (1 + kIz) at), ¥/ {cosx- cost)
Z.2.__ The case in which p = 1.
We row consider the solution of the pair of dual series relations
oD
—;-k,ao + z‘ nt oa ncosx(nx) = £(x), Osx<c (7.15)
n::j1
e
Za  + /__, a, cos(nx) = 0, c<x s7W, (7.16)
nN=4¢ '
If we integrate the second of these series term by term we find that
o
=
ta (# -x)~) n'a sinnx=0, c<x <, (7.47)
] L~.J n
v
We now assume that whenc < x < 7w
= x
Fha + Z‘ n' a_ cos(nx) = sin($ x) / alt)at (7,418)
0 n
L ¢ Af(cos t - cos x)

which is equivalent to assuming that

a, =.f¢ { [: £ (u)du + A/;z- /: g(t)dt} (7.19)

a, =nb, + 4_;1-2- /: g(t) P (cos t) - P_ (cos tﬂdt (7,20)
where fe
b =§ j f(u)cos(nu) du, (7.24)

If we substitute these values into equation (7.17) and interchange the order
of integration and summation we find that

4
g(t)S(x.ﬁ t)dt = % a(r-x) - bn sin(nx), c
fc 0 ; <xs<7w
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where
S(xh t) = e ‘ rP (ces t) - P (cos tﬂs:.n(nx)
/4/2 =
sin{} x) H(t - x)
- A/{cos x ~ cos t)
so that g(£) is the solution of the integral squation
rT S
sin(% x) ; gltlat => b sin nx—fgao(ﬂ - x)
i X A/(cosx-cos t) [ '
with solution
1 — s d 7 (m- x)ces(Fx)d x
g(t) =— Zb {P (cos t)+P (cos t)} . —— [

< g dt Jtv(cost-cos x)

N2 @

n=«

Now

f\/la

b {P (cos t) +P (co'; t)} == [ £(u) a(uq t)du

T Jjo

where

olu, t) = }- {Pn(cos t) +Pn_1(cos t)} cos(nu), (Osuscgstgm)
N2 cos(% u) H(t - u)

) #{cés u - cos t)

-1

and hence

ibn {Pn(cos t) + B, _ (cos t)} = zﬁ[c f) co,s(.% u) du - E[c £(u)du

# Joa/(cosu~-cost) wlo

n-4

showing that

1 4 2 d se £(u) cos(d u) du
—_—— b [Pn(cos t) + Pn"(cos t)} = - - 2 .
4’2 at bt . “+ wdt Jo #(cos u -~ cos t)

(7.22)

L 4
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The soluticn of the integral equation (.7@22) can therefore be written in the form

2 d ,sc £(u) cos(f u) du a d ,r (7 ~ x) cos($ x) dax ‘
g(t) == — : -——— e (7.23)
7 dt Jo #/(cos u - cos t) 7 a4t ,/t ‘A/lcos t = cos x)

The value of a can be found by a simple integraticn.

'L.3. Bquations of the Second Type.

If we make the substitutions

C=mT=~=-Y, X= @T~5, ,)‘a(,:'n'oa x' =4A; n("1)nan=An3 f(ﬂ“Y)=f1(."f)

in the equations

Zha +7‘ na_ cos(nx) = 0, Osx<e (7.21)
Ay
* a + Z a, cos(nx) = £(x), O<x <7 (7.25)
N=4q

we find that they take the form

%AAO+Y n"Ancos(ny)=f1(y), Osy<y
n=y
¢
151\.0+ /. Ancos(ny)=0, y<ysaw
n=4

which have been considered in §7.2 above. From equations (7'.19);, (75_20) and
(7.23) we can write down the solution of these equations and reverting to the
original variables we find that the solution of equations (7.24) and (7.25) can
be written in the form

A =%{j§ /: g(t)at +/: f(x)-dx}

a, =1-'2--j'1r f£(x) cos(nx)dx+71§/;c x (7.26)

[+]
x {Pn(cos t) +Pnﬂ(cos t)}g(t)dt
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where g(t) is given by the equation

2 da ,r £(u) sin(f u) du ra 4 [o¥ sin(% x) dx
g(t) = == — - - “ (7,27)
w#dt Je A (cos t -cosu) w AtigH(cos x - cost)

In a similar way we can reduce the solution of the pair of dual series

equations
-
%Xao + E n’ 2 cos nx=0, D <x <ec (7.28)
ne 4
o
%—ao + (-: a cOS nX= £(x) . c<xsmw (7.29)
n=1

can be reduced to the type considered in 87.1 above. In this way we find that

the solution of this pair cf equations can be written in the form

T
a =22 [0 gu) ae (7.30)
A Je
n (7
a, =775 ( g(t){Pﬂ(cos t) - F_. (cos t)}dt (7.31)
icC e B
whers
24 ,rw u cos( & x) dx a ,a(7- x)cos(%x)
7 dt Jt Jt4{cos t - cosx) %4t th/(cost- cos x)

Z:4.  Cosine Series analogous to Fourier-Bessel Series.

We now consider dual series equations of the type

Z(n ~)Pa_cos(n-$x=£(x), Oc<z<e (7.33)

Ny

;jan cos(n ~ §)x = £,(x); c<xsw, (7.34)




If we make the substitutions x =7 -y, e = 7~ vy. f1(1r -y) =F1(y)5,
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£ lm ~y) = Fz(y)g a, = (<4)" (n-3)PA we find that these equations

assume the forms

E"(n F)Ph sin(n - By =F (),  Os<yey
neq
.
z;tnsin(n--%-)y=F1(y)9 y<ysmw
nm4

and these equations have already been considered in 86y,

In this way we can show that the equations

=
L(n-%) a cos(n-Fx=1r(x), Osxcec

n=g¢

a_ cos(n - §)x= 0, c<xsw

gL

a3

=1

have the solution c
a, = A2 / g(t) P.. (cos t)at
J0 i

g(t):sm t/t f(u)_d_,g
4]

T A/‘(cos u - cos t).

This solution also has the property that when O < x < ¢

iancos(n -3x = ¢ _glt)dt

L x p(cos x - cos t)

The equations

Z(n-%)ancu(n—%)x=0, O¢ x<c

Z ancos(n -F)x=f(x),ccxsnw

x4

(7.36)

(7.37)

(7.39)

(7-40)

(7.11)

(7.42)

(7.43)




have the solution

= 4/'2"[7r g(t) B _ (com t) at

where

g(t) = -+ & L{x) sinxdx

w dt jt AN (cos t - cos x)
Also for this solution.

t) at

a-"n-"*a cos(n - % x-—-—- .
anlq( 2) v ( ¥ x) [ A/(cost-cos x)'

S8imilarly the equations

Za cos(n - £)x = £(x). Osx<ec

n
N

I
o
N

cC<XxXL 7

Z<n - B)a, cosn - H)x

have the solution

67

(7.44)

(7.45)

(7.46)

(7.47)

(7.48)

c ] c
a = *1/2 jro g(t),‘f;l - cos t}dt, a = :};[o g(t){Pn_z(cos t) -Pn(cost)}

(n21)

where ‘ o
- £
g(t) - -+ & x) dx
x dtJeo #/(cos x - cos t)

and where for O g x < ¢

= c

z(n-—)a cos(n - 3 )x="a-sinx _'g(t) at .

e ox x #/(cos x - cos t)

Pinally we note that the solution of the equations

og

ZAncos(n-%h::O; 0Osx<ag

R=g

(7.49)

(7.50)

(7.51)

(7.52)




Z(n - %) a cos(n - %) x= £(x), c<xsm (7.53)

can be written in the form

a = :1/; [c (1 + cos u)g(u)du, a = ;1/-2'[c g(u)[l'-’n (cos 1(11)1 ; 1;")_2(003 u}(:r;‘-)

where

A/—y d w du 1 d 7 du -
g(t) = -—-i—-] — - — )/ £(x)ax (7.55)
# dtJt Af(cos t -cosu) . 7 atJt 4/(cost-cosulu

with .
Y, =[ g(u) du,
c
8o that
' m
v, [ __»/_‘/ du }l dy £(x) ax.
2L 7 Je #(cos g ~cosuw ) #lJc #(cos ¢ - cosu)lu
For this solution
x
Za cos(n - 3)x=sin x gu) du . C< X e (7.56)
n ¢ 4/(cos u - cos x)

8 Dual Series Relations involving Series of Associated Legendre Functions,

The study of dual series relations in which the series involved are
expansions in terms of associated Legendre functions have been studied by Collms
(1961). whose treatment we shall follow here.

We begin by considering the problem of the determination of the constants
{an}. such that

Z a T;:'n (cosg) =£(6), 0 <6<a (8:1)

N=9
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Z (2n +2m + 1)anT;Tn (cos6) =gl8). a<6sw (8-2)
A
n=o

where the functions f(g) g(a) are prescribed and we assume that sin"" ¢ £(g)
and sin " eg( 8) are continuous in the closed intervals EO,, a],, [a . wJ
respectively In g}.l;.we saw how dual series equations of this type can arise
in the analysis of problems in mathematical physics.

We make the assumption that

[

z (2n +2m + 1)a"'1'm—::1 (GOS 6) = h(@)., (.0 €6 5 a») (’8-33)

n=0

then using equations (3.48) and (3 49) we find that

a T |
a_ =%(- )m[ h(x)Tmﬂin(lcos x)sin x dx + {(-1) J[ g(x)T" (cosx)sin x dx, (8-4)

msn
a

(n=0,1,2, ...). Substituting this expression for a_ into the series on the
left hand side of equation (8 1) and interchanging the order of summation and
integration..we find that h(6) satisfies the integral equation

. af®
- )mj h(x)Sm( 6. x)sin x dx = £(8) - (1) [ag(x)sm(e - x)sin dx_ 0 < 6 < a(8.5)

where the kernel S m( é, x) is defined by the equation

s (e, x) ‘Z T " (cos 6) T g, (cos x). (8.6)

n=o0

Now. by the addition theorem for Legendre polynomials (IacRobert; 1947,
p 328) . we bave

Pr(coe 8) = Pr(cos 6 )Pr(cos x) +2 }" (<1)" cos(m &) T;m(cos 6 )T:(cos x), (8,7)

where r is a positive integer and

cos B = cos §cos x + siné sin x cos ¢ -
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From this it follows that

2 1r(-1‘)"m' T"vm (cos 6) Tm(cos x)j rzm
‘2% r r
} P (cose) cos mydy =
0. O<r<nm

and hence. from equation (8 6), that

r- 2w
) X) —L"LZ [ n(cos 8)cosmydy = L;'LLZ[ P, (cos8)cos my dy,
7 &JJo

Using the fact that

Z Pn(cose) =(2-2 cosa)_%

n=o

we £ind on interchanging the order of integration and summation that

S (6.%) = (+4)" [°" cos(myg)ay - ()" 2" 2cos(zzn ¢)ay ‘
27 Jo NM(2 - 2 cos ©) 27 Jo //(s’ + 8, -251szcos¢)

where s, =2sinffcos £ x,8,=2singxcos}f ands > O;s,> O forall
9 and x since both lie in the open interval (0, 7). The integral occurring
in the equation on the extreme right can be put in another form by using a2 lemma
due to Copson (1947)s we find that

s (s,x) - &A1) "m("’“ T T (8.8)
w(s s,)" V{5~ s )el - o )}

If we substitute the form (8 8) for sm(e, x) into equation (8.6) and notice that
when 6 < X 8, < 8,6 and when 6 > x, 8,>s8,, we £ind that h(g) satisfies the
equation

2m

sin® -n S, . s8"asg _ [° . 4-m
__;..Q. j h(x)sin'™" x dxjo /\/Es: 3 sz)(s: i 82‘2-] +/ h(x)sin'™"x dx X

/ 7{(3 -s=)(s -s7)]
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m

- v S 2
= #(6) - B [ g(muia ™ x ax [, (0 <0 <a). (8.9)
T a o 4/(_(-312-32)(52- s?)j
We now change the variable in the inner integral from g to u where
S =2cos $f0cos 5 xtantu
and invert the orders of integration in the integrals in equation (8,9) to obtain
the integral equation
6 H(u) (tan £+ u)” du 6G(u, a ) (tan § u)*"du

= (tant6)" £(8) - — (0 <6 <a) (8.10)
o A (cosu -cos @ o A/(cos u - cosé

where the functions H(u) and G(u, a ) are defined by the equations

@ h(x) (cot & x)" sin x dx
H(u) =1_ hlx) (ot § x) 2 . (8.11)
2w Ju A/(cos u - cos x)
1 7 g(x) (cot & x)" sin x ax
oy a) =— [ = (u < a). (8.12)

21 la A/(cos u - cos x)

From equations (3 -422 and 1_:) we see that the solution of the integral
equation (8.10) is
(cot 2 uw)™ @ ;u sin g(tan L 8)" £(6)dg

(u) =—__1r—_-— ;jo l\/(cos 6 = cos u) ) G(u, i ):\(0 cuca) (6.13)

and from equations (3.432 and b) that the formila giving h(x) in terms of the
function H(u) so determined is

a
h(x) = - 2(tan % x)"l cosec x —d-/ —H(M—;(O £xX<al. (8.14)
dxd x

A/ (cos x - cos u)

The corresponding value of a is obtained by inserting this form for h(x)
into equation (8;4)\\ However, it is possible to determine a in terms of H(u),
Collins has shown that

% a
a, = {20)°r(n + 2n + 14 H(u) (sin % u)m cos(fu)n (cos u)du
1 m,n
PM(n+m+3) ) ’

+/, Go(u) (sin & u)® cos(+ w) M m,n (cos u)du} (8.15)




72
where Hm n denctes the priynomial defined by the equation
T'(n +m + ‘12“) 1.1 ( 6)
n (y) = — P (~n.n +2m +1; n +%; (1 -u) ) 8.1
m n /7 \ 4 2 4
Tin + 1 T(m + 5)

and ¢lu, a), (O<u <a),
¢,(v) = (8.47)

G’:u;u).; (azu s m)

The cases m = G. 1 ar= of most intersst from the point of view of spplicaticr

Putting m = 0 in these formiiae we see that the acuations

. )
) a P loos 8) = £(6), 9< 68 <a (8.18)
ig o
n=g
ad
>-‘ (2n+1)anP"(,cos9) =g(e): a< 6 < (8-19)
e
have solution
[C‘. ‘0’.7
a = 4/2( foBla) cos[\’_n +%)13 du+ i G {u) cos [’*‘. + %)u]iu} (8.20)
a o Jo J A
u . 17 T .
H(u) = 14 f iwﬁuf__g(,ig ), Glu, )=.1_.,.[ _—&(x) sin x dx . (8,21)
7 du.J oA {cos b~ cosu) 2nda f{(cos u - cos x)

Also the auxijiary function h{x) is given by the equaticn

4 [a 3in u H(uv) du_

h(x) = - 2 cosec x == | ; 0¢ x <a. (8,22)
dx Jx A/(cos X - cos u)
As a special case of these results we have that the solution of the equations
{-"-\
) !/ 27
LJaﬂPﬂmosG):’lf_ D<cH<a (8“,,;)
nN=9
{-"-\
j(2n+1)a.nPn(co.56)=O; a< @ s (8.24)
N
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n n + 1

is :
anz;_ {sinna +sin(n+1)a } (8.;25)

The corresponding expression for H(u) is ﬂg cos —12- u 30 that when O < 6 <«
we have from equation (8.22) that

- .
oN2 d %sin u cos($ u) du

Z(Zn +1)a P (cos6) = - cosec §— . .

L non T 4646 A/(cosb - cos u)

The integrations are elementary and we find that

. 1 fcos 2 a cos ¥ a .

Z(2n+~1)a P (cos @) = -{%ﬂ’- sin™' ~ },o <6< a.(8.,26)

R R : 2atl A 21 21
e T cos £ 8] A(cos®$6- cos™%a)

Similarly if we put m = 1 in the general formulae we find that the pair of

equations
z a”'f::1 (cosg) = £(8). O<b<a, (8.27)
n=o
Z(2n+3)an’f;1‘ (cos 6) = g(6). a<6 sw, (8,28)
n=0

possesses the sclution

a = —’-[ : H(u) tan(} u) see(% u) {:(n +1) sin(n + 2)u + (n + 2)sin(n+1)u} du

n

+ [ﬂGo(u) tan($ u) sec(3 u){(n +1) sin(n + 2)u + (n + 2)sin(n + 1)u}du (8.29)

2cotfud ru sin” (6) £(s) a6 ( )
—— Y we G u a (8.30
T du Jo A/(cos 6 - cos u) ? )

1. 7 g(8) cos® (1 6) as
G(u, a) == 7 (8931)

m 42 4/(cos® - cos u)

and Go(u) is defined by equations (8.17)
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We now consider the eguations

z (1 +Hn) anT;Tn (cos 68) = £(8), (0 <c6<a ), (8.32)
= g(e).- (e << ), (8.33)

g -
}: (2n ¢ 2m +1) a, T . (cos 6)
iT=0c

where H  is a given function of n which is o(r"") for large values of n. As
before we assume that sin "¢ £(6) is continuous in (O, « ) and that sin" ¢ g(g)
is continuous in (@, 7). If we make the assumption (8.3) then the coefficients
a  are agein given by equation (8:,14.); if we insert the value (8,4) for a into
the series on the left hand side of equation (8”32) we obtain the eguation

m+n

-}
- a
%-(..‘1)rn > T;:n (cos 6)(1 + Hn) [ h(x) T"  (cos x) sin x dx
L ) o
n=o

= f£(8) - %(-1)‘“ Z (1 + Hn) T;Tn (cos 6)[ g(x)T:M(cosx)sinxd x,(0<8 <a)(8.34)

n=c¢
As in the derivation of equation (8010) we find that

e " n ‘ o 6G(u,a)tan” u du
(1) ) Tn'n(cose)[ g(x)Tm_n(cosx)sinx dx =cot , (5.35)
' N a 5
n=o

‘5 A/ {cosu - cos 6

[9 H(u) tar’™%u du

= a
Ly z T—::: (cos 0)/0 h(x)’l‘m":.n (cos x)sin xd x =cot' 46 (8.36)
n=0

o A/(cosu ~ cos 6)’

where H(u) and G(u, a) are defined by equations (8.11) and (8.12) respectively,
If we write

= a
m -m
120" 5,27 (con0) [ h(x) 1" (cos x)ainx dx

n=0
then, using equations (3.47) and (3.50), we find that

Q0

HnI?,(n +2m +1) n eR:m (u) au & n
I-=-% cot %6/ h(x)sinx cot £xdx x
— T(n +1) oA{cosu-cosb)Jo R"  (v)
B v)dv

A

n=0

‘0o Af(cos v - cos x) '




It can be shown that

6 tan™fu du a 0
I-cot"%6 tan" % v K1(u, v)H(v)dv
o #/(cos u-cosg) Jo
where
00
T 2 1 m m
K1(u; v) = meot"Lu cotm%vz lnT‘(}ﬁ_;T’Tl : 6 Rm+n(u) Rmm(v).
n=0

Similarly if we write
= T
Jd = %(-1 )mz H nT::Ln (cos 6 )[ g(x) Tmm‘n(cos x)sin x dx
, a :
n=¢

it can be shown that if

G-(v,a), O<v<a
G'O(V) =
G(v, v); Q< vy
then 6 tan” L udu oW .
J=cot“‘1§6j I tan" 3 v K (u, v)& (v)dv.
{ 1 o
Jo M(cosu—cose)do

If we substitute from equations (8.35), (8.36). (8.37), (8.41) into
equation (8.;34) we find after some manipulation that the function

3(u) = tan® 3 u{H(u) +6(u, a)}

satisfies the Fredholm integral equation of the second kind

cot"tu d pu f£(x) tan"f x sinxdx

J(u) +[a K1(u,, v) J(v)dv =

o w dnJo A/(cosx-cosu)

75

(8.37)

(8.38)

(5.39)

(8.40)

(8a441)

(8.42)

n
-[ tan™ % v K (u, v) G(v. v)av, (0 <u < a) (8.43)
a 1

with symmetric kernel K1(u; v) defined by equation (8.38). Once we have found
the solution of this equation we can determine H(u) from equation (8°l{.2) and the

function h(x) from equation (8.14),
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The case m = 0 is of special interest. We then have
J(u) = Hu) + Glu, o) (8.44)
where J(u) is an even function of u satisfying the integral equation
a u -
3 + 2 [ K (u-v) v)av 1L [T L0 sinxax
Tdna ® 1rduJoA/(_cosx-cosu)
a0
2 T
- -y H cos(n + %)u/ Glv, v)cos(n + F)vdv, |u <« (8.45)
mla " @
n~o
where o
Ko(x) = Z H cos(n + %) x. (8.46)
n=o
9. Dual Equations involving Series of Jacobi Polynomials

Recently Noble (1963) and Srivastav (1963 g) have considered dual series
relations involving Jacobi polynomials. In this section we shall follow the
method of solution due tc Srivastav.

We consider the equations

-l 1
Z\ I'(a +n+§-)A Pmlﬁ)

n'n (cos 9) = £(g), 06 <¢ (9.1)
e F(a +n +1)
S T(f +n+>)
z . . 2. A p(a)ﬂ) (cos 6) = 8(6), <6 <7 (9.2)
i T(f +n+1) ™"

N=o

&
where a > =%, > -1 and PS »P) is the Jacobi pelynomial defined by the equation

P(na"ﬁ) (x) =(n ;a) JFlennsas Be1; avtr g -4x) (9.3)

or; alternatively, by the equation

Pn(a., B) (x) = (_1)n(n ;ﬂ)}: (-n,n s asBat; Bat; 3 +3). (9.4)




7

We shall alsoc require the fact that if o > ~1.8> -1,

/‘i (4 -x0%0 +x)ﬂP‘Ea-°ﬁ) (x)P'f%ﬂ) (x)dx:pga""ﬁ)E)mn , (9.5)
where

(a, 2%+ P+ 1T(avn41)T(B 1)

Pna' Pl ni Tla +§ + 2n++n1;r(a+ﬁ++nn++ 17 (5:6)

We observe that if the solution of the pair of dual equations (9.,1) and (9.;2)

is known we can derive the solution of the pair

oo T _3_)

z —ii:l:i—-}. P(asﬁ) (cos 6) = f(e)s O<6<¢ (9V7)

N=g r(a+n+1) i "

«© r A

z (ﬁ+n +2) A P<a3ﬁ) (COS 9) = g(e):: p<Osm (9"8)
r(p+n +1) "

Runo

by a simple change of variables. For that reason we shall consider only the pair

(9.1) and (9.2).
If in equations (8.1) and (8.2) we make the substitutions

. m
I"ﬁ(n + 1)sin’ @ P(m, m) (cos 6 )
2"T(n +m +1) "

-m
Tmn.-n (COS 9) =

T(w +n +3)

A, r(6) =2"" sin"™ 6 F(6)

a = n?

n (n +1)

g(6) =2 sin" 6 &(a)

we find that these equations can be written in the form -

z I‘(m+n""2')AP(m,m)(cose)=F(9)9 O<b<a
—~ Mm+na+14) " "

= 1( =)

mD+n 4+

z 2 AnP(nm’m) (cos6) =G(6), a<o <n
' T(m+n+1)
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so that the equations (8.1) and (8.2) are special cases of the equations (9.1) and
(9.2) with ¢ = g = m,
We begin by considering the integral
ﬁ(cos x) (sin % = x)2 ¢

u 8in xP
I(u):/ dx, Osus7 . (9.9)
1 o A (cos x - cos u)

If we replace the Jacobi polynomial by the hypergeometric function given by equat-

ion (9.3) and interchange the order of summation and integration we find that

- 1 gE 2 1 1 -1
Iq(u) =2 a1r2 I" +a + 1 (1 - cos u)a+2'Pna+ z: P- 2 (cos u). (9410)

I‘(a+n+‘2'

Similarly we can show that the integral

- i 2
. (v) fﬂ sin xan‘ B (cos x) (COS 1§ x) ﬂdx . (9L1’l)

v M(COS Vv = Ccos x)

has the value
I (v) = ,, z (1 +cosv)ﬁ+2 MP“-EJﬁ+ Z (cos v) . (9,12)
2 n

I‘(ﬁ+n+—)

From equations (9.10) and (9.12) it follows immediztely as a result of simple
differentiations that

-1 1
4 I1(u) = M (4 - cos u) 2s::.nuP “z.P+z (cosu), (9.13)

dau T(a +% +n)

and that

-4 (v) = 2" % I(g+1 +n) (1 + cos vP~ H smvPa+§’ﬂ % (cosv). (9.14)

av r(g+% +n)

Using the orthogonality condition (905) we can easily show that if

f(cos v) = ZJ cnP(:‘ﬂ) (cos v), O<svsw, (9.15)

then the coefficients ¢ n &re given by the equation
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4
. =g.1_(_g +0+20+4)0(g+ f+n s 1)/ (sin—’2~v)2a+1 (cos’gv)z * £(cos v) x
Fr(a+n+1)r(g+n+1) °

x P(: ? ﬁ)(cos vidv, (9.16)

We are now in a position to solve the pair of equations (9;1), (9.2). ir
we multiply both sides of (9.1) by sing (sin -12-0)2&(005 6 - cos u) 2 and
integrate with respect to 6 from O to us then differzntiate with respect to u,
we find on using equation (9,13) that

0
Z'QI%U - cos u)a-% sin uZ AnPna-%’p+%(cos u) = F(u) OC<su g<¢ (9:17)
n=u

where F(u) is defined in terms of £(6) by the equation

u 9

P(u) = % / sin6 (sin %6 )20‘ (cos® - cos u) 2 f£(o)as, (9.18)
o

Similarly if we .;nultiply both sides of equation (9.2) by sin6(cos %9)2/3
(cos u - cos e)'ﬁ and integrate from u to » we find that

2-/3”% (4 + cos u)ﬂ"'%y

L
n=0

)(cos u) = G(u), (9.19‘)

A P(a" zB+%
nn
where G(u) is defined in terms of g(6) by the equation

T
G(u) =/ sin g(cos %6 )2/3 (cos u - cos 6 )-%g(e)de, ¢ <usw (9,20)
u

If we now make use of the formula (9.16) we find that

: -t
A =(21r)2n2(a+13+2n+ﬁr(a+ f+n +1) «

" I‘(a+n+%)1‘(ﬁ+n+—:')
¢
x {(cos %¢)2ﬁ+ ! P:-%’ B+z (cos gb)/ sin e(sin-é-e)za(cose - cos¢ )-;_f‘(e)de
. o

¢ ¢
+(n+p8 + %)/ sin 6 (ain%&)zaf(e)de 6 (cos 6 ~ cos v)"% (cos%v)zﬁsin v x
o

1

A -1
P:+2’ F-z (cos v)av
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L4 5 6 4 5
+/¢ sin 6(coat 9) ﬁg(e)de/ (cos v - cos6)Z(cost v)(sing v)< 2
¢

1 1
Pna 2, P42 (cos v) dv} (9421)
If the forms of the functions f and g are complicated the determination of
the coefficients A by means of equation (9.21) is obviously a very difficult
procedure, but in many physical problems it is sufficient to know the behaviour

of the functiens

f1(9) = Z §a+n + 2; AnPg’ﬂ) (cos 9)’ p< 6 <7 (9,22)
oo T a+n +1
oo I‘(p+n+-:-) (’ﬂ)

g (6) = z o ) A B " (cos8), Os<6<¢ (9.23)
noo p+n+1

We can write equation (9517) in the form

a®
-1 1 -1 1.
y A P@ 2z p+7)(cos u) = 2% 772 (1 ~- cos u)? acosech(u)i
[, RN
n=¢
If we multiply both sides of this equation by (sin u)(s:.n

(cos u =~ cos x) 2 - ¢ < x € 7 and integrate we obtain the relation

2¢ -
) a -1

2222t (1 - oo 6) £,(0) = 2E4? 2(u) du
f{(cosu—cose)

, 10 .
r (a7 stn ulatng e (oon § w2 v g )
cos - COS U

i.e. when ¢ < 0 < 7

F(u) du

(cos u - cos 8)

6
£,(6) 2% 201 - cos e)‘“/ >

s 2017 (1 = cos 8)° / sin u(sing u)2a 1(co.‘s u) 28 - 1—G£21—du— , (9.24)

(cose—coau)
where F(u) and G(u) are defined by equations (9.18) and (9.20) respectively.

Similarly for O< 6 < ¢ we have
_ ¢ (cos%u)zﬁsinu(sin lu)-za
f‘z(e) --F R cosb) pcoseco—-/ 2 F(u)du
ae #/(cos8 - cos u)
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BEPY S
P (4 + cos e)-ﬁ coseceif sin u &(u) du . (9.25)
da. ¢ A (cosé - cos u)
REFERENCES

D. Collins, 1961, "On some dual series equations and their application to electro-
static problems for spheroidal caps," Proc. Cambridge Phil. Soc., 57, 367.

C. Coocke and C., J. Tranter, 1959, "Dual Fourier-Bessel Series,” Quart. Journ.
Mech. and Appl. Math., (Oxford), 12, 379.

T. Copson, 1947, "On the Problem of the Electrified Disc," . ‘ « Soc.,
(2), 8, L.

Fox and E. T. Goodwin, 1953, "The Numerical Solution of Non-Singular Linear Integral
Equations," Phil, Trans. A., 245, 501.

Lamb, 1953, "Hydrodynsmics," 6th edit., University Press, Cambridge.
M. MacRobert, 1947, "Spherical Harmonics," 2nd ed., Methuen and Co., London.

Noble, 1963, "Some Dual Series Equations involving Jacobi Polynomials,®™ Proc.
Cambridge Phil. Soc. (to be published).

Reissner, 1937, "Freie und erzwungene 1lors:Lons--szch\.ringv.mgen des elastischen
Halbraumes," Ing. Archiv., 8, 229.

N. Sneddon, 1951, "Fourier Transforms,® McGraw-Hill Book Co., New York.

1956, "The Special Functions of Mathematical Physics and Chemistry,
Interscience, New York.

1962, "Fractional Integration and Dual Integral Equations,” (North Carolina
State College, Applied Mathematics Research Group, Report).

N. Sneddon and R. P. Srivastav, 1963, "Dual Series Relations: I: Dual Relations
Involving Fourier-Sessel Series." Proc. Roy. Soc. Edinburgh (to be published).
P. Srivistav, 1963a, "Dual Series Relations II: Dual Relations involving Dini Series"
Proc. Roy. Soc. Edinburgh (to be published).
1963hb, "Dual Series Relations III: Dual Relations involving Trigono-
metrical Series,” Proc. Roy. Soc. Edinburgh (to be published).
1963¢c, "Dual Series Relations IV: Dual Relations involving Series of
Jacobi polynomials." Proc. Roy. Soc. Edipburgh (to be published).
1963d, "A Note on the Solution of an Integral Equation,® Proc, Edinburgh
Math. Soc. (to be published).

J. Tranter, 1959a, "On the Analogies between some Series containing Bessel Functions
and Certain Special Cases of the Weber-Schaftheittin Integral," Quart. Journ., Math.
(oxford) 10, 110.

1959b. "Dual Trigonometrical Series;" Proc. Glasgow Math. Agsocn.,

N. Watson, 1944, "A Treatise on the Theory of Bessel Functions," University Press,
Cambridge.

T. Whittaker and G. N. Watson, 1927, "Modern Analysis,® 4th edit., University Press,
Cambridge.

E. Williams, 1963, "The Solution of Dual Series and Dual Integral Equations,” Prec.
Glasgow Math. Soc., (to be published).




